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SECTION i

INTRODUCTION

Air Force sensor and weapon requirements for Advanced space-based detec-

tion, surveillance, and defense will necessitate the construction of large

space structures (LSS). These structures will be very large and lightweight,

and hence extraordinarily flexible. They will most probably be assembled in

space. Their generic characteristics would include the interconnection of

several rigid bodies with flexible elements, with the rigid bodies also sup-

porting flexible appendages.

Air Force mission requirements for these structures will impose severe

pointing and tracking specifications. Such stringent specifications will

necessitate the design of a superior control system that would involve hun-

dreds of sensors and actuators. The space structure dynamics are infinite

dimensional, and design models may involve thousands of state variables.

Thus, an immense amount of real-time digital computation will have to be

carried out by the control system. This massive computation cannot be

4ccomplished by a centralized control computer. Therefore a decentralized

control system employing distributed computation is essential.

The need for decentralized control can also be understood by the fact

that these very large structures would have to be assembled in a piecemeal

manner. A partially assembled space structure will need some real-time

control so that it maintains its station, performs partial functions, and does



not bend during further assembly. In addition, certain LSS (e.g., phased

array radars) may be capable of functioning with only a partial assembly. The

partial assembly will require a complete real-time control system to perform

its functions. It would be undesirable to completely reprogram in space a

large control computer every time an addition is made to the structure. A

more sound engineering approach is to augment a decentralized control system

as additional elements of the large space structure (LSS) are brought

together. It is obvious that decentralized and hierarchical control archi-

tectures are essential if these envisioned large space structures are to

accomplish their mission.

Another factor that- significantly influences the problem of control sys-

tem design for large space structures io the inherent uncertainty in modeling

the dynamic behavior of flexible structures in space. The combination of

large uncertainty, large dimensions, and severe performance specifications

creates a difficult control system design problem even were one to use a

centralized control architecture. The need for decentralized and hierarchical

architectures serves to transform the design problem into one which has re-

ceived minimal attention and for which few results or design and analysis

procedures have been obtained.

The primary objective of this project has been to initiate research to

develop a sound engineering approach to the design of decentralized robust

control systems for large space structures. The engineering procedure to be

developed must, at a minimum, address the following issues:

(a) The necessary architecture of the control system must be de-
termined from the system structure of the large space structure,
the performance requirements of the LSS, hardware implementation
considerations, and any sequential assembly requirements for
the LSS;
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(b) The procedure must be able to readily handle the large
numbers of input, output, and design model state variables

that will be present in a realistic design problem;

(c) The procedure must be able to incorporate the performance

specifications for the LSS in the design process;

(d) The impact of dynamic modeling errors due to the

uncertainties of modeling an inherently infinite dimensional
system must be incorporated;

(e) The impact of dynamic modeling errors due to the deliberate

model simplifications that will be made to accommodate (a)
and (b) must be incorporated.

As discussed in the preceding paragraphs, the required control system

architecture will likely require both decentralization and hierarchical

control layers to satisf-y the requirements listed in (a) and the computational

and analytical issues raised in (b). The issues raised in (c) and (d), when

taken independently, are standard issues which must be addressed by control

system designs for any system. The issue of deliberate modeling error is also

of concern in control system design for many systems. However, in the context

of LSS, these issues assume special significance when combined with the tight

performance specifications, large system models, and non-classical control

architecture.

Taken together, the issues raised by (a)-(e) present a formidable control

system design and analysis problem which has received very little attention.

The combination of robustness and performance with a decentralized architec-

ture has received partial consideration only in [11-[5). References [11-[2]

were actually concerned with the development of decentralized synthesis pro-

cedures, but the results can also be used to analyze the robustness of weakly

coupled systems (as noted in [4]). Reference [3] developed a design procedure

that achieved arbitrary performance specifications using a decentralized
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architecture for systems that had no bandwidth limitations. The first simul-

taneous consideration of performance, robustness, and decentralized archi-

tectures occurred in [41-[5]. This work developed a preliminary approach to

both qualitative and quantitative analysis of the feedback properties of

decentralized systems. Finally, the combination of robustness analysis with a

control architecture induced by a system time scale separation structure has

been considered in [61-[7].

This study of decentralized robustness procedures for large space struc-

tures attempts to organize the issues discussed in the preceding paragraphs,

identify the useful analytical tools that are available [1]-[6], and extend

these tools where possible. Clearly this is an ambitious undertaking. Our

initial approach limits the scope of the research to the study of a specific

simplified problem that retains representative features of the generic de-

centralized design problem for large space structures with sequential

assembly. The limited scope allows us to address the objectives of the study

in a well defined context, thereby allowing the development of insights and

understanding into the interactions of the numerous system structure and con-

trol architecture issues.

Hence, generic system structure assumptions (such as those used in [1]-

(7]) can be evaluated for reasonableness and applicability, and the irrelevant

structures can be quickly eliminated. The usefulness of the resulting analy-

sis tools can be determined in terms of their ability to produce accurate pre-

dictions of system performance and design specifications.

The disadvantage of using a specific system as a basis for such a study

is the difficulty of quantitatively asserting that the conclusions of the

study can be applied beyond the specific system. This study minimizes this
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difficulty by retaining as many generic features of the large space structure

problems as possible. Although the quantitative results may be difficult to

generalize precisely, the qualitative assessments of available analysis design

tools, and the insights into the interactions between system structure, con-

trol problem structure, and control system architecture will be valid for many

problems.

The specific problem that is considered is the sequential assembly

problem for two subassemblies. It is assumed that each subassembly consists

of a highly oscillatory system that requires vibrational control to damp the

oscillations. The individual control systems must perform their functions on

both the decoupled subassemblies and on the interconnected assembled system.

A second level controller using a reduced set of controls and measurements can

be implemented after the interconnection is effected to augment the decentral-

ized controllers.

This particular problem was chosen for its ability to present the issues

(a)-(e) in the context of a simplified problem. The control system archi-

tecture (decentralized control with a second level coordinating layer) can be

(and is) deduced from the system structure, performance requirements and se-

quential assembly requirements. The use of decentralized control directly

addresses the problems associated with large numbers of variables. The fact

that each subassembly is representative of a LSS implies that the LSS control

issues must also be addressed and that modeling errors that result from

approximating an infinite dimensional system must be considered. Finally,

both modeling errors due to low order mcdels of the infinite dimensional

system and the decentralized design procedures are incorporated.

5
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Probably the most significant contributions of this research are the

identification of issues and problems associated with the decentralized con-

trol of large space structure with sequential assembly, and the development of

a prelimiaary design methodology for such systems. At a more technical level,

two new multivariable robustness results have been developed. Finally, we

have also identified a generic error structure for the sequential assembly

problem.

The system that forms the basis for this study is presented in Section 2.

Both the subassemblies and the interconnected system are described by partial

differential equation models. Decomposition results for such systems (pre-

sented in Appendices A and B) are used to analyze the structure of the inter-

connected system and to deduce necessary features of the control system

architecture. Low order design, analysis, and truth models are then derived

from the infinite dimensional models using low order finite element

approximations.

Section 3 conducts an error analysis of the system with the goal of

specifying design constraints for the decentralized control systems. Three

generic error sources are identified, and quantitative analyses are performed.

The results of these analyses are used to specify the subassembly control sys-

tems. The control system designs are presented in Section 4 and the validity

of the analyses of Section 3 is verified. Section 5 summarizes the contri-

butions and conclusions obtained from this study.

6



SECTION 2

SEQUENTIAL ASSEMBLY MODEL

2.1 INFINITE DIMENSIONAL MODELS

The purpose of this section is to present a model that will be used to

study the applicability of the various decentralized robustness analysis and

design tools [11-[7J in the context of the sequential assembly of large space

structures. The model has been developed to be as simple as possible while

retaining the basic features of the sequential assembly problem.

A number qualitative features of large space structures and the sequen-

tial assembly problem distinguish the control problems for such systems from

other control problems. Large space systems are inherently infinite dimen-

sional with closely spaced, lightly damped modes. This feature implies that

any design based on a finite dimensional design model must be able to cope

with a (possibly large) number of lightly damped unmodeled modes in the roll-

off region of the design. The controls and measurements for the system are

typically "point" controls and measurements, with significantly fewer controls

than states. The sequential assembly problem imposes a decentralized control

architecture on the overall assembly. Each of the decentralized controllers

must function with its separate subsystem and must be designed to maintain

stability when connected to the overall assembly. Finally, a second level

control architecture can be used to minimize the performance degradation

caused by the interconnection of the subsystem assemblies.

K 7



The model that will be used to represent these features is based on the

physical system depicted in Fig. 2-1. Each subsystem consists of three unit

masses connected by two uniform beams. The two subsystem controls are the

forces on the middle and one end mass, while the two subsystem measurements

are the separations of the masses. The generic goal of the subsystem control-

lers is to maintain the nominal separation of the masses as nearly as pos-

sible. The primary contribution to errors in these separations are longi-

tudinal vibrations of the systems. Assuming that the masses can be modeled as

point masses on a uniform beam of length Lm , the longitudinal position of an

incremented element of a subsystem can be described by the hyperbolic partial

differential equation

2 a2

- z(x,t) + b -z(x,t) - c2 - z(x,t) = 0
at2  at 1 aX2  (2-1)

where

z(x,t) - longitudinal position of the point x of the
beam at time t

b - coefficient of restoring force

c 1 . velocity of wave propagation

The boundary condition for the first subsystcms are

a a2
- z(',t) " - m - z(Ot) + U1l

ax x-O at 2  (2-2)

a a 2  L M
Sz(',t) Lm i m =Z( m t 1

ax - at 2  2 (2-3)

8
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Figure 2-1. Physical Basis for Sequential Assembly Model

a2

- z(.,t) m - m - z(L, t) (2-4)@x x-L m  2 ( -)

while the boundary conditions for the second subsystem are:

a a2

- z(,t) - m z(0,t) (2-5)ax x-O m ; 2  zO

- z(.,t) Lm, 2  m

ax x- -m - z(-,t) +u21
2 at2  2 (2-6)

- z(*,t) - m- z(Lm,t) + u22
ax axLm  t2  (2-7)

where m is the mass of the physical masses MI-M6.
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The measurements of the subsystems are

L
m

Y11(t) = z1(-,t) - zi(0,t) (2-8)
2

Lm
Y12(t) = z(L,t) - zl(-,t) (2-9)

2

L
m

Y21(t) = z2(-,t) - z2(0,t) (2-10)

L 
m

Y22(t) = z2(Lm,t) - z2(-,t) (2-11)
2

For each subsystem, the parameters b, c, Lm and m were chosen a3:

b = .06 (2-12)

m = 1 (2-13)

La = 2 (2-14)

Cl = 1 (2-15)

The subsystems described in the preceding paragraph will define the sub-

assemblies for the sequential assembly problem. The connection of the sub-

assemblies (with length L) will be made using a beam of length Lm/2 whose

longitudinal wave propagation velocity is c2. The second level input that

will be used to maintain the separation between the subassemblies is the

differential force applied between the end masses of the two subassemblies,

while the second level measurement is the separation of those masses. The

overall system is described by the non-uniform hyperbolic partial differential

equation

a2 3a 2

- z(x,t) + b - z(x,t) - c2 (x) - z(x,t) 0 (2-16)
at2  at 3x2

10
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a2

z(O,t) - m - z(O,t) + Oil (2-17)
ax at 2

a L a2  L
;-x z(2t) = - 'c --- z(-,t) + U12 (2-18)ax 2 t2  2

a 82

- z(L,t) = - m - z(L,t) + U3 (2-19)
ax 3t2

a 3 a2  3
- z(-L,t) = - m - z(-L,t) - U3 (2-20)
ax 2 at2  2

a 32

- z(2L,t) = - m - z(2L,t) + u21 (2-21)
ax at 2

a 5 a2  5
- z(-L,t) = - m - z(-L,t) + U22 (2-22)
ax 2 at2  2

L
Yll(t) = z(-,t) - z(O,t) (2-23)

L
Y12(t) - z(L,t) - z(-,t) (2-24)

2

3
Y21(t) = z(2L,t) - z(-L,t) (2-25)

2

5
Y22(t) = z(-L,t) - z(2L,t) (2-26)

2

where

3 5
c1  0 x < L; -L x 4 -L2 2

c2 L x<-L
2 (2-27)



The design and truth models will be derived from the infinite dimensional

models (2-1), (2-16) using low order finite element methods. The use of low

order finite element models allows the retention of most of the features of

the sequential assembly problem and large space structures. However, models

derived from low order finite element approximations are typically very in-

accurate and vary strongly with the order of the approximation. To minimize

the effects of this unrealistic model variation, the length parameter L of the

assembled subsystem (2-16) was adjusted to yield the same fundamental mode as

the separated subsystem (2-1) when c2 is taken to be zero. Thus the subsystem

models generated by (2-16) when the coupling beam is not present will be

the same as the subsystem models generated by (2-1), and any errors between

design and truth models can be attributed to physical sources. The values of

L that ace used will depend on the order of the finite element approximation.

2.2 STRUCTURAL ANALYSIS OF THE ASSEMBLED SYSTEM

The longitudinal wave velocity c2 of the coupling beam will determine the

system structural properties of the assembled system and, consequently, will

affect the decentralized and hierarchical structures that can be utilized.

Three cases for the value of c2 will be qualitatively examined in this sub-

section (see Fig. 2-2):

CASE A: cl >> c2 (2-28)

CASE B: Cl << c2 (2-29)

CASE C: cl f c2 (2-30)

In both cases A and B, the asymptotic eigenanalysis of Appendices A and B

and the analyses of [8]-[9] apply. The analysis for case A leads to signifi-

cant conclusions regarding the control architectures that can be used on the

12
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Figure 2-2. Structure of Approximate Models for Three Cases
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system. Cases B and C are more difficult to address precisely, but generic

conclusions can be drawn from similar system structures.

Appendices A and B address the problem of spectral analysis and solution

approximation for a class of stiff systems. This class is defined precisely

in the appendices, and includes hyperbolic systems of the form of (2-16) with

either (2-28)-(2-29). The basic conclusion of these appendices (and the re-

lated works [91-[10]) applied to (2-16) is that, for the purposes of analysis

and control, (2-16) can be decomposed into two independent analysis or control

problems (termed the stiff and normal problems). One problem is based on

infinite dimensional models of the two subassemblies, while the other problem

approximates (2-16) by a single beam connecting two equivalent masses (i.e.,

the subassemblies are approximated by equivalent point masses). The parti-

cular case, A or B, determines the forms of the two problems and hence the

control architectures that will be effective.

In case A, (see Fig. 2-2a), the interconnection between the subassemblies

is much less stiff than the subassemblies themselves. As noted in the pre-

ceding paragraph, the overall problem decomposes into two infinite dimensional

problems. The stiff problem approximates (2-16) as two independent systems,

each of which is modeled by (2-1)-(2-11). Thus any controller design based on

(2-1)-(2-11) will face only a minimal amount of error when applied to the

coupled system. The normal problem approximates each subassembly by an

equivalent point mass equal to the total subassembly mass. These equivalent

point masses are connected by a beam whose longitudinal wave velocity is c2 .

Thus, this structure imposes a natural two level decomposition of (2-16) into

two decentralized subassembly controllers and one coordinating controller that

14



regulates the subassembly separation. This case (2-28) and the corresponding

decentralized/hierarchical architecture will be iavestigated in detail in the

remainder of this report.

Case B (se. Fig. 2-2b) also decomposes into two problems. The stiff

problem in this case is represented by two equivalent point masses connected

by a beam whose longitudinal wave velocity is c2. However, the equivalent

masses are taken as the end masses of the subassembly. The normal problem is

based on the subassemblies but does not decompose as in Case A. Rather, the

model assumes the form of (2-1) with 5 point masses rather than 3. The middle

mass represents the combined mass of the end masses of the subassembly. Thus,

the normal problem is an almost uniform system, with the only non-uniformity

being the doubled center mass.

Consequently, Cases B and C result in basically the same control prob-

lems: a uniform system that must be controlled by a decentralized control

architecture. The connection of two uniform subassemblies of the form of (2-

1) into a uniform system of the form (2-16) significantly modifies the sub-

assembly transfer function (in particular, the fundamental modes and all

harmonics significantly affected) and introduces a strong coupling between the

subsystems. Any significant control effects on the subsystems are almost sure

to push one or more of the lightly damped modes into the right half plane.

Hence a decentralized/hierarchical structure as outlined in the Introduction

and in Subsection 2.1 is not feasible.

Other combinations of partially decentralized and hierarchical architec-

tures may prove useful for such structures. For example, the use of over-

lapping local controllers has proven successful in controlling lightly damped

systems such as strings of moving vehicles [10] and freeway systems [11].
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This architecture would require that a iecond level controller which overlaps

the subassembly controllers be in place and active before the subassemblies

are connected. Another promising approach would be to use the local subas-

sembly controllers to induce a system structure that is amenable to decompo-

sition on the assembled structure. Finally, additional mechanisms for natural

decompositions of the assembled system exist (e.g., large end masses will im-

pose a decomposition similar to Case A). These mechanisms and their effects

can be identified using the results of Appendices A and B. Each of these

approaches to Cases B and C warrants further investigation.

2.3 FINITE ELEMENT APPROXIMATIONS FOR DESIGN AND TRUTH MODELS

Low order finite element approximations for systems (2-1) and (2-16) were

used to develop design, analysis, and truth models for use in the development

and illustration of the decentralized/sequential assembly design procedure.

Due to the strong dependence of the system description on the number of ele-

ments used in low order approximations, some of the parameters of the design

model and the coupled system model were adjusted to reduce the difference

between the fundamental modes of the models. These adjustments affect only

the errors due to the low order approximations, and not the qualitative

properties of the true error sources. The specific adjustments that were made

are indicated in the description of the individual models.

The finite element method that was used employs overlapping triangular

elements (see Fig. 2-3). The elements on each end of the beam being approxi-

mated are right triangles whose base is half the base of the interior ele-

ments. The interior elements are isosceles triangles. Each interior element

overlaps half the preceding element and half the succeeding element. The
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Figure 2-3. Example of 5 Element Approximation

elements are normalized with respect to the longitudinal wave velocity, i.e.,

L

f c(x) vi (x)2 dx - 1

0

Data for each of the models can be found in Appendix C.

The truth models for the unassembled systems were derived from (2-1)-

(2-15) using a 5 element approximation. The resulting 10th order system

was reduced to an 8th order system by eliminating the unobservable center of

mass (CM) position and velocity states. The resulting truth model open loop

modes were:
-.03 ± 4.627J

-.03 ± 4.62>j

-.03 ± 1.485J

-.03 ± .99J (2-31)

The singular values of the truth subsystem model transfer function are shown

in Fig. 2-4.
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Figure 2-4. Singular Values of the 5 Element Subsystem
Truth Model

The design models for the subassemblies were obtained from (2-1)-(2-11)

using a 3 element approximation. The longitudinal wave velocity was adjusted

to align the fundamental mode of the design model with the truth model. The

Oth order unobservable modes were again eliminated. The eigenvalues of the

resulting 4th order design systems were:

-.03 t 1.4685j

-.03 ± .99j (2-32)

The singular values of the design subsystem model transfer function are shown

in Fig. 2-5.

An analysis model was derived from the coupled system (2-12)-(2-27) using

a 6 element approximation for the purpose of analyzing the perturbational ef-

fects of coupling the two subassemblies. The subassembly lengths were

adjusted to be

L = 1.6 (2-33)
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Figure 2-5. Singular Values of the 3 Element Subsystem Design
Model

to obtain consistency between the decoupled truth model and the subassembly

truth model. The longitudinal wave velocity of the coupling beam was taken to

be

c2  .1

(2-34)

The two eigenvalues corresponding to the 0th mode were found to be unibserv-

able and were removed. The resulting 10th order system had the following

eigenvalues:

-.03 ± 1.468J
.03 ± .9136J l subsystem 1 modes

-.03 -+ .9913j)

-.03 ± 1.4669J
-I subsystem 2 modes

-.03 ± .9886J )
-.03 ± .0542J coupling mode (2-35)
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Finally, the truth iaodel for the assembled system was derived from (2-

12)-(2-27) and (2-33)-(2-34) using an 11 element approximation. The two

elgenvalues corresponding to the 0th order mode were found to be unobservable

and were removed. The resulting 20th order system had the following eigen-

values:

-.03 ± 4-2572J coupling mode

-.03 ± 4.758"j susse) noee

-.03t 4.586Jsubsystem 2 unmodeled
-.03 t 4.5234J ) dynamics

-.03 ± 14395J )
I subsystem 2 umodee

-.03 t .37J d mc

-. 03 ± 1-3995J)
subsystem 1 modes

-. 03 ±t .9397J )

-.03 t .0554J coupling mode (2-36)
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SECTION 3

ERROR/STRUCTURAL ANALYSIS AND
CONTROL OBJECTIVES

3.1 METHODOLOGY

The purpose of this section is to describe a methodology for the design

of decentralized control systems for large space structures that are to be

assembled sequentially, and to develop the necessary analytical tools to im-

plement this methodology. The framework that will be used for the methodology

is common to all control system design problems (see Fig. 3-1). The first

step is to identify all performance criteria and error sources. These are

then mapped (using appropriate analytical tools) into constraints on the con-

trol system design. The control system must be designed to satisfy the re-

sulting constraints, and its performance is verified via analysis and simula-

tion. Each transition between steps of this procedure usually requires

iterations to guarantee that consistent specifications for the next step are

achieved.

Our implementation of the methodology will be based on loop shaping syn-

thesis techniques [12J-[13] that utilize singular value analyses. A decen-

tralized design will be developed by requiring each subsystem to use a local

design model. The subsystem design problems will then be determined by speci-

fying control system design constraints in terms of bounds on the singular

values of the loop transfer functions of the closed loop subsystem design

models.

21
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IDENTIFY PERFORMANCE OBJECTIVES
AND ERROR SOURCES

SPECIFY CONTROL SYSTEM
CONSTRAINTS

CONTROL SYSTEM SYNTHESIS-

Figure 3-1. Generic Methodology for Control System Design

Once the subsystem design problems are formulated in this manner, the

synthesis of a subsystem controller that satisfies the singular value con-

straints is a standard problem that has been well studied (c.f. (121-(131).

The unique aspects of this approach for decentralized LSS with sequential

assembly are the type of error sources that must be addressed, and the need to

develop singular value specifications that are not so conservative that the

resulting synthesis problem is unsolvable.

The main emphasis of this section will be the development and evaluation

of analysis tools that map the unique large space structure/sequential as-

sembly decentralized control problem error sources into specifications on the

singular values of the subsystem design problems. There are three dominant

error sources for this problem: the usual system modeling errors, a modifica-

tion of the subsystem transfer function model due to the neglected coupling,

and interactions between the subsystems due to the neglected couplings. An
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appropriate analysis tool is developed or identified for each error source to

guarantee that the resulting control system design problems are feasible.

The appropriateness of an analysis tool for a particular error source

depends largely on the presence of an underlying system structure for the LSS

and error source. The presence of such a structure presents att opportunity to

exploit that structure to reduce the conservativeness of the corresponding

design specification. In fact, large error sources can make exploitation of

structure essential. One of the significant contributions of this section is

to identify a generic structure for a dominant error source and to develop an

analysis tool that exploits this structure.

3.2 SIMPLIFIED CONTROL OBJECTIVES AND ERROR SOURCES

As noted in the preceding subsection, the purpose of this section is to

develop or identify analytical tools that can be used to implement the decen-

tralized design methodology illustrated in Fig. 3-1. To concentrate on this

objective, the methodology will be applied to system models derived from the

system described in Section 2 with simplified performance goals and error

analyses. The simplifications serve to concentrate our effort on the method-

ology development and analysis by minimizing the conceptually unimportant de-

tails which result from the full problem. Meanwhile, the use of a system such

as that of Section 2 allows us to retain the generic structure of the models

and error sources.

The primary objective of a feedback control system is to maximize perfor-

mance in an appropriate sense within the constraints imposed by the actuator

and sensor limitations and plant modeling errors. In general, the perfornance

goals will be quantified in a number of ways. Examples include reduction in
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the system response due to classes of external disturbances, percent accuracy

in following classes of commands, and maintenance of such goals in the

presence of parameter variations. All these are compatible goals and serve

primarily to quantify the system properties that are required. Since our goal

is to focus on a systematic procedure for handling the multiple sources of

modeling error in the sequential assembly problem, we will use a simplified

performance goal: maximize the system bandwidth while maintaining stability

and zero steady state errors in the mass separations. We will view this goal

in a loose sense in that we will also attempt to evaluate the conservativeness

of the specifications that result from the error analysis. The latter will be

achieved by synthesizing a control system that "nearly" violates the design

specifications.

The error sources that will be considered are those that can be directly

attributed to the special features of the LSS/sequential assembly decentral-

ized control problem. These error sources can be represented by differences

between the design, analysis and truth models. The errors can be associated

with three sources, each of which must be addressed differently due to the

structure of the error source.

The first error source is the mismatch between the local design model for

a subassembly and the actual subassembly dynamics. For purposes of simpli-

city, this error source will be specified as the error between the subassembly

design and truth models described in Section 2. In practice, this error

source would have to be quantified to account for all possible subsystem

parameter variations and for all the high frequency unmodeled dynamics. How-

ever, the general character of this source can be represented by our approach
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as long as the limitations of the quantitative error analysis based on this

simplified model are recognized.

The connection of the subassemblies leads to the remaining two error

sources. The interconnection causes the subsystem transfer functions (i.e.,

the transfer function from the inputs to outputs of a single subsystem) to

change, and introduces a coupling transfer function between subsystems. Al-

though the control system design is based on the subsystem design models, it

must also stabilize the interconnected system. This means that the nominal

design must be robust to the two error sources (subsystem modification and

neglected coupling interactions).

The error source due to subsystem modification will be specified as the

difference between the subassembly design model and the subassembly transfer

function that results from the analysis model. The general approach to

characterizing this error source would use an analysis model of the coupled

system that is at least as detailed as the design models for the subsystem.

The structure and magnitude of the error source would be determined from the

difference between the analysis subsystem models and the design models. The

errors would then be characterized in terms of specifications on the singular

values and singular subspaces of the closed loop design. We will follow this

approach with the only difference being the level of detail of the design and

analysis models. It should be emphasized that the analysis model is only used

to characterize the error source for robustness analysis, and impacts the con-

trol system synthesis only through this characterization. Hence the addition-

al complexity of this model does not automatically translate into comparable

controller complexity, and the decentralized control architecture will be

retained.
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The third error source, the neglected subsystem interactions of the

interconnected system, will also be specified by the intersubsystem coupling

transfer functions of the analysis model. Again, one would generally use a

more detailed analysis model to characterize the structure and magnitude of

this error source. However, the level of detail of the analysis model does

not conceptually effect this approach. As with the subsystem modification

error, this error characterization will be used to determine specifications

for the subsystem designs. Since the designs will still be based on the un-

coupled design models, the resulting control system will retain the desired

decentralized architecture.

3.3 ROBUSTNESS ANALYSIS. TOOLS

3.3.1 General Robustness Theorems

The purpose of this subsection is to present and, when necessary, develop

the analysis tools that are required to implement the methodology outlined in

the preceding subsections. The results are presented in a uniform framework

based on a restatement of a singular value robustness result by Lehtomaki et.

al. [14] and a new result, Theorem 3.2, that allows the combination of

different robustness tests. A series of tests which fit this category and are

applicable to the problem described in Section 2 are then presented in Sub-

sections 3.3.2-3.3.4.

Let PO(s) be the nominal model of the plant transfer function, and let

Pt(s) be the true plant transfer function. Let A(s) denote the input

multiplicative error between Po(s) and Pt(s):

Pt(s) = PO(s) [I + A(s)] (3-1)
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We will assume that Pt(s) is only known to be in a convex set P. The class

of allowable perturbations D is then defined as the convex set:

D = {A(s): A(s) = P-i(s) [Pt(s) - PO(s)], Pt(s) c PI (3-2)
0

Note that in practice D may be either specified directly or derived from the

specification of P.

Let K(s) denote the feedback compensation. Then, the loop transfer

function of the nominal feedback system at the plant input will be defined

by:

L0(s) = K(s) P0 (s) (3-3)

and the loop transfer function of the true feedback system will be defined

by:

Lt(s) = K(s) Pt(s) (3-4)

It will be assumed that the feedback compensator is square and invertible.

Hence the relationship (3-2) between the error class D and plant class P re-

mains valid.

We will assume that the nominal plant model P0(s) and each plant Pt(s) e P

satisfy the following assumptions:,

(Al) P0(s) has a finite dimensional realization.

(A2) Pt(s) is a matrix of functions, each analytic in the closed
right half plane except for a finite number of poles.

(A3) Pt(s) and P0(s) have the same number of closed right half
plane poles.

(A4) [I + PO(s)]- is analytic and bounded in the closed right half
plane (i.e., stable).
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(AS) If Pt(s) has a pole at s=jwo, then Po(s) has a pole at s=jwo.

(A6) P-1 (s) exist except at a finite number of points in the
0
complex plane.

Finally, let DR denote the Nyquist contour which closes in the right half

plane with a circle of radius R and indents into the left half plane around

each jw axix pole of L0 (s) with a circle of radius fiR.

With this background we can state the following fundamental robustness

theorem.

Theorem 3.1: Assume that (A1)-(A6) hold and that there exists an R0 such

that for all R > R0 , for each s c DR and for each A(s) c D

o [I + L-1(s) + aA(s)] > 0 0 4 a 4 1 (3-5)
0

Then the true closed loop system sensitivity matrix [I + Lt(s)]- l and transfer

function matrix [I + Lt(s)]-1 Lt(s) are analytic and bounded in the closed

right half plane (i.e., the closed loop system is stable).

Proof: This theorem is a slightly generalized restatement of Theorem

2.2 in [14]. First, ([14], Theorem 2.2) can be extended to distributed sys-

tems by invoking the generalized Nyquist criterion [15] in the proof of

([14], Theorem 2.2). Assumptions (Al)-(A5) imply that assumptions a)-c) of

([141, Theorem 2.2) are satisfied.' Assumption (A2) implies that Lt(s) is a

member of the class of distributed systems for which the generalized Nyquist

criterion [15] holds (i.e., Lt(s) e B(G); see [151 for details). Finally,

(3-5) is simply a restatement of assumption d) of ([14], Theorem 2.2), as the

following argument shows.
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The condition

det [I + (1-) LO(s) + a Lt(s)] - 0 Lt(s) c KP (3-6)

holds for some value s e DR, some kt(s) e P and some a c [0,1] if and only if

det [I + LO(s)-I + e A(s)] = 0 (3-7)

for the same s e DR, a c [0,1] and for some A(s) c D. But condition (3-7)

holds if and only if*

a [I + L0 (s)
-1 + a A(s)] = 0 (3-8)

Hence (3-3) holds if and only if d) of ([14], Theorem 2.2) holds.

This Theorem (and its parent [14]) are the basis for most of the guaran-

teed robustness tests to data. The results for multiplicative perturbations,

[121, [61 additive perturbations, [12], divisive perturbations [14], phase in-

formation [161, and weak coupling [1]-[2] can all be shown to guarantee that

(3-5) (or a minor variant) holds for each frequency on the Nyquist contour DR .

Two of these results, multiplicative perturbations and weak coupling, will be

used in subsequent subsections, and a third result for perturbations with a

specific structure will be derived directly from Theorem 3.1.

*Note that the use of the smallest singular value in (3-8) can be replaced by

any inverse norm function, i.e., any function T defined as:

T[A] = Ii A- 1 1-1

where 11.11 is any induced norm.
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A difficulty that arises when using a number of diverse stability tests

that are satisfied only on part of the Nyquist contour is that Theorem 3.1 and

the results [61, [12], [14], [16] do not apply directly. The following

Theorem allows the integration of tests to guarantee that Theorem 3.1 holds

and that the resulting true closed loop system will be stable.

Theorem 3.2: Let Ti(Qi) denote a test that is true if and only if

condition (3-5) is satisfied for each s e QiC DR, and each A(s) e D. Assume

that assumptions (Al)-(A6) hold, that {[Ti(i)IN are a set of tests that are

N i=1

all true, and that U 9i = DR. Then the closed loop system is stable.
i=1

Proof: Given any s c DR, there is a set Il such that s e Rj. Then the

assumption that Tj(SQj) is true implies that (3-5) holds. Hence Theorem 3.1

implies the closed loop system is stable.

The power of this theorem lies in its ability to combine different types

of robustness tests over different frequency ranges into a comprehensive

analysis which guarantees stability of the closed loop system. For example,

the general multiplicative modeling error test [12] may be a tight constraint

at high frequencies, but conservative at low frequencies. If a structured

analysis test can be developed for the low frequency error, then it can be

combined with the high frequency multiplicative error analysis to yield a com-

plete robustness result.

For the system described in Section 2, three error sources dominate. As

will be seen in subsection 3.4, the local modeling error is predominantly a

high frequency error for which the unstructured modeling error analysis is

appropriate. The subsystem model error that results from connecting the sub-

assemblies dominates at low frequencies as subsection 3.5 demonstrates. This

error requires a structural error analysis to avoid being overly conservative.
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Finally, the neglected subsystem interaction that results from connecting the

subassemblies is examined in subsection 3.6. This error source is largest in

the mid-frequency range, and can be analyzed using a weak coupling analysis

analogous to that developed by Bennett and Baras [1].

Each of these three robustness tests that will be used subsequently in

this report will be presented In the remainder of this section. In each case,

we will use the identity

TO(S) - [I + Los)-1] -  (3-9)

3.3.2 Unstructured Multiplicative Error

The general multiplicative error robustness test has been developed in

[12] and has been used in a variety of contexts. The unstructured multiplica-

tive error Am(s) e Vm characterized by the bound tm(Jw):

Dm - {Am(s): a[A(jw)]- ! > Jtm(Jw) (3-10)

Stated in the form of Theorems 3.1 and 3.2 the unstructured multiplicative

error robustness test for a frequency range im is:

Theorem 3.3: (Unstructured Multiplicative Error Robustness Test) If

a [To(jw)] < Xm(jw) V W C SIM (3-11)

then condition (3-5) holds for all w e 9m.

Proof: Condition (3-5) can be written as

a [I + LO(jw)- ] - a "o[A,(Jw)] > 0 a c [0,1] (3-12)
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Condition (3-11) is obtained by moving the second term to the right side of

the inequality, maximizing over a (w-1), inverting both sides of the in-

equality, and using (3-9).

3.3.3 Rank One Errors

The subsystem model error that results from connecting the subassemblies

is highly strucured. The principal structural features of the error source

As(s) are that As(s) has rank one and that As(s) is dominant over low frequen-

cies (see subsection 3.5 for a more complete discussion). The first feature

implies that only one of the singular values of As(s) is non-zero. Hence we

can write the singular value of decomposition of As(s) as (where the explicit

dependence on s has been suppressed for notational clarity):

As = U E VH (3-13)

where

j (3-14)

U = [uI U2]

V - v1 V21

Quantities that will be useful in the statement and proof of Theorem 3.4 are

the angle * between the left and right singular subspaces corresponding to ol

and the relative complex angle 0 betweea the left and right singular vectors

(see [171-[181 for details). These angles are defined uniquely whenever ul is

not orthogonal to vi by:
Iw

vH ul - cos * eJ 0 € 0 - , -r ( B i (3-15)
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ir
when uI is orthogonal to V1 , 0 is undefined and = -

2
The second structural feature of As(s) implies ,that .the nominal closed

loop function can be approximated by the identity matrix over the dominant

freqency range Os of the structural error

ST 0 (JW) - I] < e W C £ (3-16)

with c < 1. Theorem 3.4 is a guarantee that (3-5) holds for error sources

with this structure and a given value of e in (3-16).

Theorem 3.4: (Rank One Error Robustness Test). Assume that the nominal

closed loop transfer function TO(s) satisfies (3-16). Define

£

r = + sup [al sin f]I-€ c

Asevs (3-17)

If for each AS e V

I1 + O cos f eJ6l > r V w e ns (3-18)

then condition (3-5) holds for each w c 98s

Proof: Let w e Qs and Ds e Ds . Since T0 (jw) satisfies (3-14), TO-(jw)

satisfies

£

[TI(j) - I] <- (3-19)
-- 0 1-C

Condition (3-5) can be rewritten as:

S{[TI(Jow) - I] + I + aAs(jw)} > 0 Vac[0,1] (3-20)
0
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Inequality (3-20) will be satisifed if

a I+ a As(jw)] > a [T1l(jw) - 11 Vcgc[O,1J (3-21)
0

which in turn will be satisfied if (using (3-19)):

I + a A5 j) > -Vac[0,1] (3-22)

After multiplying the bracketted term on the left by (the unitary matrix) UH

and on the right by U, condition (3-22) becomes:

a [I + mE VHuJ > -Vcic[O,1J (3-23)

Using (3-12) -(3-13) in (3-23) gives:

I 0Lo Oee aj, c0vH U2]~ 1

Condition (3-24) will be satisfied if

I [1 * 1Y cos f e j 0 E3-5
CY > - + (01 11 21 Yc[0(,1]

Since U is a unitary matrix and vi has unit magnitude, the maximum singular

value on the right of (3-25) satisfies:

[.VH 1121 - sin (3-26)
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Substituting (3-26) into (3-25) and maximizing the right side over

ac[O,1], w C Q., and As e D. implies that (3-25) will be satisfied if

+ a al cos eJO 0C

C > - + sup [01 sin *] = r Vce[0,1]
-- 0 1 E-1 Weis

Ase~s

(3-27)

Condition (3-27) will be satisfied if

II + a al cos * eJel > r Vac[0,1] (3-28)

Assume there exists and aO e [0,1] such that (3-28) does not hold. Then,

since Ds is convex and 0 c Ds,

Aso = ao As  (3-29)

is an element of Ds with

A
uH Aso ui = ao0 cos *0 eJO

1

= a0 a1 cos eJ O  (3-30)

Hence

I I + lo0 cos 0 eJO0 I < r

which contradicts (3-18). Thus condition (3-28) must hold. Since (3-28) is

sufficient for (3-5) the proof is complete.

Theorem 3.4 provides a simple graphical test for the robustness of

systems with rank one error sources. The test is a Nyquist-like test on the

(non-analytic) function

f(s) = 0i cos 4 eJ O

- uH (s) As (s) uI (s) AS e DS (3-31)
1
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where ul(s) is the first column of U. Condition (3-18) requires the Nyquist

locus of each f(s) to avoid a circle in the complex plane of radius r and

centered at the point (-1,0) (see Fig. 3-2). Specifically, the circle Fr is

defined as

Fr = {x c C: x - (-1,0) r) (3-32)

Since Ds is a convex set, any point inside a locus for a particular As e Vs

(i.e., any point on a line segment from the origin to the locus) will lie

on a locus for some other As e DS. This means that the set of all points on

a locus for some As e Ds

L = {x £ C: x = f(jw) for some As e Ds, w e QlsI (3-33)

is a solid region in the complex plane (as illustrated by the shaded region in

Fig. 3-2). Hence, the region can be completely characterized by its boundary.

Thus, the test for stability can be conducted by the following steps:

1. Determine r (from (3-17))

2. Draw the circle Fr (see (3-32))

3. Plot the boundary of L (see (3-33))

4. Check that Fr nL - .

Theorem 3.4 is reminiscent of, the various circle theorems [19]-[21] that

are available for nonlinear, time varying and multivariable systems. However,

this result incorporates the error source phase and directionality structure,

as well as the usual magnitude variation of the error source. The ability to

incorporate phase structure is also more general than the structures that can

be analyzed using the structural singular value [221-[231.
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Figure 3-2. Graphical Test for Rank One Error Sources

The set Ds defines the structural information about the error source that

is required by Theorem 3.4. 'While the rank one structure is imbedded in the

theorem statement, Ds must still define the phase and directionalityinforma-

tion. This information can be specified either by the complex boundary func-

tion f(jw) and the second term of (3-17), or by the real functions al(jw),

*(ic) and O(jw).

Directionality information is incorporated through the second term on the

right side of (3-17). This term is a bound on the how much the loop coupling

can be modified in the nominal system. If the relative change between the

nominal and true system input-output directions is large in a frequency range

that also has a significant magnitude variation then this term will be large.

This bound can be very conservative (a result of (3-27)). However, the

37



conservativeness can be removed, if necessary, at the expense of a more

complex test and a more complex characterization of the set Ds.

Finally, ,it should be noted that Theorem 3.4 can be used to determine how

tight the approximation (3-16) must be for a given error source set Ds, and

how much stability margin is guaranteed for the true system. Given a set Ds,

define

11 = sup I al sin *j
WeS

AsOVS (3-34)

and

E2 iinf I + ai cos eJ Oi
wes

4seDs (3-35)

Then if

1I + 12 < 1 (3-36)

4there is a value of e such that Theorem 3.4 holds. In particular, any value e

that satisfies

I -t1 - 92
€<

2 - il - t2 (3-37)

will work. This value in turn determines how tight the control loop must be

over the frequency range SIs. The controller can be chosen to satisfy (3-17)

and thus guarantee stability (assuming, of course, that such a controller

choice does not violate any other robustness or performance constraints).
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Once a value for e has been determined, the graphical test can be used to

determine the guaranteed stability margin m of the closed loop system with the

rank one perturbation included. In this context, the guaranteed stability

margin is magnitude of the largest allowable unstructured error in either the

inverse of the nominal closed loop transfer function T-(s) or in the error
0

source characterization Ds that can be tolerated. The value m is given by:

m = inf x-y
xe Fr
yeL (3-38)

That is, m is the minimum distance from Fr to L (see Fig. 3-2).

3.3.4 Weak Coupling Errors

The third principal error source is the interconnection dynamics that

result from connecting the subassemblies. This error source will be

characterized by the set of interconnection matrices Dw. Let {Piio }N denote
i=l

the nominal subsystem models of the decoupled plant. Then the nominal model

is

PO = diag [Piio (3-39)

and the error between PO and any true model P is:

0 P-1P P-1 P11 12 11 IN
-1

P P 0 p-P
Aw = 22 21 22 2N

-1PP-p- p p-I p . .. 0

NN NI NN N2
(3-40)
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Hence, the interconnection error set is:

Dw = (A = [aij]: Ajj = 0, i=,...,N} (3-41)

A number of systems analyses have been developed to handle the intercon-

nected systems problem (see [241 for a detailed survey). Most have assumed

that the set Dw has some form of weak interconnecting structure. The most

relevant results are those of Bennett and Baras [1], and Limebeer [2]. Both

utilize the concept of block diagonal dominance [25] to prove stability of an

interconnected system given a nominally stable block diagonal system. The

following Theorem presents a similar result cast in the framework of Theorems

3. 1-3.2.

Theorem 3.5: (Weak Interconnection Error Robustness Test). Assume that

assumptions (AI)-(A6) hold. Let (Toii}N denote the closed loop transfer
i=1

function of the nominal uncoupled subsystem. If for each A e Dw

a [Toi i ] < 1 (Au)] V i-l,...,N V w e -w
IJ f1il (3-42)

then condition 3.5 holds for each w e Sw.

Proof: Condition (3.42) can be rewritten as:

N
a [T- 1 I > I a (Aij) V i=1,...,N V w c

oi J= (3-43)

inequality (3-43) implies that (T-1 + A) is block diagonally dominant (see
0

[25]), which in turn implies that (T-1 + A) is nonsingular for each A e Dw
0

[251. Thus

o(T - 1 + A) > 0 V A V Dw Vw e Sw

0 (3-44)
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Let a e [0,1]. Then, for any A e V cA e Vw. By (3-44),

a (T- 1 + aA) > 0 V C (-
0 (3-45)

Since a e [0,11 is arbitrary, (3-45) is identical to (3-5).

3.4 SUBSYSTEM ERRORS FOR THE DECOUPLED SYSTEM

The first error source results from the unmodeled higher frequency dynam-

ics due to the reduced order design model. Since such neglected dynamics are

almost invariably harmful, it is appropriate to treat them as unstructured

multiplicative perturbations to the plant as represented by (3-1) with A(s) C Dm

and Dm defined as in (3-10). Theorem 3.3 and condition (3-11) give the

appropriate robustness test for errors in the class Dm.

The multiplicative error between the 5 element truth model (Pt(s)) and

the 3 element design model (P0(s)) defined in Section 2 is given by (3-2). A

plot of the inverse of the largest and smallest singular values is shown in

Fig. 3-3. The bound function Xm(jw) can be taken to be

44

.76s + sfjw 6.I12 + 1 (3-46)

Note that if this were the sole error source a bandwidth of approximately

1-2 rad/sec could be achieved.

3.5 SUBSYSTEM ERRORS FOR THE CONNECTED SYSTEM

The second error source results from the dynamic modification of the

subsystem transfer function caused by the connection of the two subsystems.

Let Pt(s) denote the subsystem transfer function obtained from the 6 element

analysis model of the coupled system, and let PO(s) denote the 3 element
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Figure 3-3. Inverse Multiplicative Error Between the Nominal 3
Element Design Model and the 5 Element Truth Model

design model of the subsystem. The inverse of the largest singular value of

the relative error (3-2) is shown in Fig. 3-4. Note that the most significant

modification to the model is for frequencies less than .1 radians/second. In

fact, if this error were completely unstructured condition (3-2) would require

the closed loop transfer function to have a magnitude less than .2, and the

control objectives would not be attainable within this control architecture.

Fortunately, the error depicted in Fig. 3-4 is highly structured. A more

detailed and accurate analysis can be performed by applying the rank one

analysis tool developed in Subsection 3.3.3.

The interconnection of two subsystems by a single beam can be viewed

as a single-input single-output loop closure. Figure 3-5 depicts a single
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Figure 3-4. Inverse Multiplicative Error Between the 3 Element

Subsystem Design Model and the 6 Element Analysis Model
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R-2686

Figure 3-5. Subsystem Modification Structure
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subsystem described by:

Y Po POI u

Y IO PII (347

where u is the 2 dimensional subsystem input vector, y is the 2 dimensional

subsystem output vector, uj is the 1 dimensional interconnection input, and yj

is the I dimensional interconnection output. The second subsystem is assumed

to have the interconnection transfer function

uI P r YI (3-48)

Following the interconnection, the subsystem transfer function from u to

y becomes:

y [Po + P0 I (1 - P Pj)-1 F POIu

P u (3-49)

The relative error between Pt and P0 is given by (3-2)

As - P-1 [PoI (I - P) -l F PIO] (3-50)
0

Since the bracketted term on the right side of (3-50) has rank one for all

values of s (PoI and P10 are 2x1 and 1x2 matrices, respectively) the

perturbation has the rank one structure examined in subsection 3.3.3.

The set Ds of all subsystem interconnection errors can be characterized

by a boundary function f(jw) whose Nyquist locus is the boundary of the set of
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all Nyquist loci of As e Ds. For the purposes of this report, we will use the

relative error between the nominal 3 element subsystem design model and the

subsystem transfer function generated by the 6 element interconnected analysis

model to define the function f(jw). Thus, f(jw) will be defined as:

f(jw) = al cos * eJ O  (3-51)

where al, * and 0 are defined by (3-13)-(3-15) applied to the relative error.

The Nyquist plot of f(jw) is shown in Fig. 3-6. This locus will avoid

any circle centered at the point (-1,0) with a radius less than 0.6. Hence,

if r (as defined by (3-17)) satisfies

r < .6 (3-52)

then the rank one robustness test (Theorem 3-4) will be satisfied. For this

relative error

sup [al sin 0] < 10-4

weR (3-53)

and its contribution to r is negligible. As long as the control system design

satisfies (3-16) with

e < .38

over the frequency range for which the error source is dominant

ns ( < .2} (3-54)

the test will still be satisfied.
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Additional information regarding the behavior of the coupled decentral-

ized system can be readily obtained from (3.39) once a value for C has been

specified. For e-0, the guaranteed margin is plotted in Fig. 3-7 versus

frequency. Based on this margin, we would expect the coupled system using

decentralized control system designs to have a mode with a natural frequency

of .1 rad/sec and a peak amplitude of approximately 6 db. Since the actual

design will require a nonzero value for c, the peak will be somewhat higher.

For e - .25 (i.e., TO(s) within -2.5 db of the identity over the frequency

range 98), the peak would be 9db.

3.6 INTERCONNECTION ERRORS

The final error source is the interconnection transfer function between

the subsystems. This error class, Vw, is characterized by the largest
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Figure 3-7. Stability Margin of Coupled Analysis
System With Structured Error

relative norms of the interconnection transfer functions {kwi(w)}N  The
i-l

class Dw for the two subassembly problem of Section 2 is defined as:

Dw
° 

- 12(s)

( A(s) - I2() 01 : a {&ij (Qw)} < 1wi(w), 1-1, 2; J~i}

(3-55)

The relative interconnection error will be determined from the 3 element

design model (PO(s)) and the 6 element analysis model (Pt(S))o A plot of the

inverse error a [P-1 P ]-1 is shown in Fig. 3-8 for subsystem 1. Due to the
011 12

symmetry of the problem, the plot of the error a [p-I P211 - 1 for subsystem
022

2 is identical, As can be seen from Fig. 3-8, the bounds (Xwi}i=1,2 can be

chosen to be:

1wi(w) =-20 dB 1-1,2, w c i (3-56)
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Figure 3-8. Inverse of the Relative Interconnection Error

where $w is the frequency range:

Aw - {w: .5 < w < 2} (3-57)

Theorem 3.5 indicates that this error will not be significant as long as the

nominal subsystem closed loop transfer functions are small (<< 20db) in the

frequency range Aw.

3.7 SUMMARY OF THE ERROR ANALYSES

The analyses of the error sources in subsections 3.4-3.6 can be combined

to provide specifications for the decentralized control system designs. The

total error A can be written in terms of the three principal errors:

A(s) = Am(s) + As(s) + Aw(s) (3-58)
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Each of the three error sources is dominant in a different frequency region.

The latter two (As and Aw) possess significant structure (rank one error and

weak interconnection, respectively) over the frequency region in which they

are dominant. Each of these error sources (As and Aw) is relatively small

outside the frequency region. They can be regarded as unstructured errors

outside the dominant regions, and can be combined with the error source Am

with insignificant effects.

Thus we can decompose our stability analysis and design specification

into three frequency regions:

Ss = {w: w 4 .21

Q= {w: .5 4 w 4 21

The design specifications can then be derived from the analyses of

subsections 3.4-3.6 and Theorems 3.3-3.5. Theorem 3.4 implies that the

transfer function TO(s) for each subsystem must be nearly unity in the

frequency range as. That is,

T0(jw) - 1 W C s  (3-59)

The weak coupling Theorem (Theorem 3.5) implies that nominal transfer function

design must be less than 20dB to avoid the interconnection error in the

frequency range 1w. There is actually a more severe constraint in this region

resulting from the multiplicative error source Am. This source consists of

the nominal subsystem modeling error (Fig. 3-3), and the subsystem connection

error (Fig. 3-4). If these are assumed to combine in the most harmful manner,
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the total inverse error would be bounded by

(&(jW))-I > 1.9 W C e (3-60)

Hence, by Theorem 3.5 the nominal subsystem transfer function designs must

satisfy

a [To(jw)] < 1.9 W e SIW (3-61)

Finally, the unstructured multiplicative error source becomes significant

at frequencies greater than 2 radians/sec. From Fig. 3-3, the bound XM(jW)

(Eq. (3-46)), and Theorem 3-3, the nominal subsystem transfer function must

satisfy.

4
a [o0 (jw)] < /3-. w2 + 1 VW (3-62)

Conditions (3.61), (3.63) and (3.64) provide specifications for the

subsystem designs that will guarantee that the closed loop system will be

stable, both while decoupled and while connected.
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SECTION 4

DECENTRALIZED CONTROL SYSTEM DESIGN AND ANALYSIS

4.1 LINEAR QUADRATIC REGULATOR DESIGN

A control system was designed for each of the subassemblies to satisfy

the decentralized design requirements developed in Section 3. To recapitu-

late, these requirements were:

To (jW) - 1 w 4 .2 (4-1)

To (jw) I < 1.9 1 4 w< 2 (4-2)

4
II To (jw) I < VW (4-3)

3.12 +1

The design goal is to obtain the largest bandwidth possible (in the sense de-

scribed in subsection 3.1) with zero steady state errors in the mass

separation.

The subassembly control system designs were developed using the Linear

Quadratic-Gaussian/Loop Transfer Junction Recovery (LQG/LTR) procedure [13].

Integral states were appended to produce the desired zero steady state errors.

The subassembly design models can be represented in state space form as:

Xm Arxm + Bmu (4-4)

Define the integral states:

e=y (4-6)
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Then the regulator design system becomes:

z = ADz + BDU (4-7)

where

z 4 (4-8)

AD = (4-9)

BD = [0] (4-10)

Define the regulator cost

j f zT QD Z + uT Ru dt (4-11)

0

where

QD CDT CD (4-12)

CD = Cp (4-13)

R = pl (4-14)

The the LQ regulator solution is given by

u - Gm zm = GI Gp] Xm] (4-15)

Gm R71 BDT K (4-16)
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where K is the solution of the regulator Riccati equation

ADT K + K AD + QD - K BD R71 BDT K = 0 (4-17)

The loop transfer function L(s) of the LQ regulator can be approximated by

1
L0(s) [ CI Cm (sI-Am)-I Bm + Cp (sI-Am)

- 1 BmI (4-18)

Equation (4-18) was used to specify C1 and Cp to satisfy the basic

design goals summarized at the beginning of this section. The integral weight

CI was chosen to satisfy

* 1
Lo(s) - I IsI< (4-19)

This was achieved by specifying

C1 = [Cm Am
-1 BmI 1  (4-20)

The state weighting matrix Cp was chosen to penalize only the outputs:

C ff= X Cm (4-12)

The remaining degrees of freedom (i.e., the choice of X) were used to match

the high frequency singular values of (4-18):

X = '[Cm Am- 1 BmI 1  (4-22)

Finally, the scale factor p of the input penalty matrix was chosen to

maximize the bandwidth of the LQ regulator by choosing its value as small as

possible while still satisfying (4-2). The resulting value of p was:

p = .1 (4-23)
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The resulting LQ regulator design has closed loop eigenvalues:

-.301 ± 1.53j
-5 subsystem modes

-.223 ± 1.Olj

-.280
integrator poles

-.292 (4-24)

The singular values of the closed loop system transfer function from system

input to controller output is shown in Fig. 4-1. The singular values of the

return difference at the system input is shown in Fig. 4-2.

28.8 . . ,

- . I I II I1111 I I I 1 .1 1 I I I I I I

-40.0

FREQUENCY (rad/sec) zs

Figure 4-1. Linear Quadratic Regulator Transfer Function

I The primary features of note with respect to the LQ designs are that

the design constraints (4-1)-(4-3) imposed by the error analysis of Section 3

are satisfied. However, both condition (4-1) and (4-3) are barely satisfied

by this design. Consequently, we will expect that the unmodeled mode thatdetermined (4-3) is likely to be very oscillatory when this controller is

54



40.e

4 e I ! I I IIII I I I1 I IIII I I I IIII1 I

* I
0.0IMfr

0.01 0.11. 1.

FREQUENCY (rad/sec) R-25s3

Figure 4-2. Singular Values of the Linear Quadratic Regulator Return
Difference

applied to the truth system. Also, the coupling pole that is expected to

occur at s w ± .lJ will be somewhat more lightly damped than the analysis

based on the approximation (4-1) would indicate. In fact, the amount by which

(4-1) is violated results in a value for e (see (3-14)) of .25. As subsection

3-5 indicates, we should expect an approximately 9db peak in the closed loop

transfer function of the true system.

Finally, we should emphasize that this design was developed specifically

to test the a priori analysis procedures used in Section 3. There are numer-

ous features of the preceding design that could prove undesirable for a true

system. However, this design will serve the purpose of pushing the design to

the limits of design specifications.
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4.2 LOOP TRANSFER FUNCTION RECOVERY

The loop transfer function recovery procedure developed by Stein and

Doyle [12] and Kwakernaak [26] was applied to the model system (4-4)-(4-5) to

produce an output feedback compensator. The Kalman-Bucy filter design used

the spectral density matrices

Em = Bm BmT (4-25)

0 = 61 (4-26)

to produce a filter design:

Xm = Am xm + Bmu + Hm (y - Cm m) (4-27)

where

Hm  ECruJT 0- 1  (4-28)

and Z is the solution of the filter Riccati equation:

A.E + ZAr + _m -E CT 0-1 Cm = 0 (4-29)

The LQG feedback compensator that results from the Kalman-Bucy filter (4-27)

and the LQ regulator design (4-7), (4-15) is described by the equations:

Xm = (Am - Bm Gpq- Hm Cm) Xm - Bm Gle + Hmy (4-30)

e y (4-31)

U = -Gp m - Gle (4-32)

As 6+0, the loop transfer function of the overall closed loop system

(evaluated at the plan input) approaches the loop transfer function of the LQ
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regulator. For the LQ design of subsection 4.1 and the design constraints

(4-1)-(4-3), the choice

6 = 10- 5  (4-33)

resulted in a satisfactory approximation to the LQ loop transfer function

(accurate for frequencies less than 8 radians/second). The KBF eigenvalues

for this value of 6 are

-9.25 ± 9.36J

-5.73 ± 5.83J (4-34)

The singular values of the closed loop transfer function for the design model

(4-4)-(4-5) and controller defined by (4-30)-(4-32) are shown in Fig. 4-3.

The same controller was applied to the subsystem truth model. The singular

values of the resulting closed loop transfer functions are shown in Fig. 4-4.

As expected, the mode corresponding to the unmodeled dynamics is highly

oscillatory and produces a small gain margin. The eigenvalues of the closed

loop system for the 5 element truth model are:

-9.38 ± 9.48j
filter eigenvalues

-5.81 ± 5.88J

-.03 ± 4.89j
unmodeled dynamics

-.048 ± 4.65j

-.236 ± 1.55J
subsystem modes

-.172 ± 1.01j

-0.209 ± .0053j integrators (4-35)
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4.3 ANALYSIS OF THE INTERCONNECTED DECENTRALIZED SYSTEM

The decentralized subsystem compensators (one for each subsystem) de-

veloped in subsection 4.2 were applied to the 20th order truth model of the

coupled system. The singular values of the transfer function of the closed

loop system are shown in Fig. 4-5, and the closed loop eigenvalues of the

resulting 32nd order system are:

-9.38 ± 9.48j
-5.80 ± 5.88j subsystem 1 filter
-5.80 ± 5.88j)

-9.38 ± 9.48J
subsystem 2 filter

-5.80 ± 5.88j

-.03 ± 4.76j t subsystem 1 unmodeled

-.05 ± 4.54j ! dynamics

-.03 ± 4.76j subsystem 2 unmodeled

-.05 ± 4.54j ) dynamics

. coupling dynamics (4-36)

-.226 ± 1.46j
subsystem I modes

-.167 ± .953j

-.225 ± 1.46J
subsystem 2 modes

.166 ± .953J

-.0083 ± .115j I coupling mode

.272 subsystem 1

-.228 integrators

-.272
subsystem 2

.228) integrators
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Figure 4-5. Singular Values of the Closed Loop Interconnected Truth
System

The qualitative and quantitative features of Fig. 4-5 and the closed loop

eigenvalues (4-36) illustrate the validity of a priori analysis of Section 3

and the resulting design specifications (4-1)-(4-3). The closed loop system

is stable, although only marginally as a consequence of the deliberate attempt

to push the design specifications. The higher frequency unmodeled dynamics

produce a small gain margin at approximately 4 radians/second. The low

frequency oscillation between the subsystems has a natural frequency of .11

radians/second as compared to the predicted value of .1 radians/second from

subsection 3.2. Also, the peak magnitude of the transfer function due to this

mode is about 9db, which is precisely the prediction of subsection 3.5.
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4.4 SECOND LEVEL CONTPOL PROBLEM

The asymptotic analysis of Appendices A and B indicate that the second

level control problem can be approximated by a system of two masses (each with

an equivalent value of the total mass of one subsystem) connected by a beam

with a longitudinal wave velocity of C2 . For the system described in Section

2 (Eq. 2-16), a 2 element finite element approximation yields a system with an

oscillatory mode of approximately .15 radians/second. This figure agrees

nicely with the observed mode from subsection 4.4. However, an analysis of

the zeroes of the truth system and decentralized controller from the second

level input to the second level output indicates a non minimum phase zero pair at

.049 ± .63j

This zero pair is a manifestation of the fact that the low frequency approxi-

mation that results from Appendices A and B are only valid for a limited

frequency range. The pair limits the ability to extend the bandwidth of the

closed loop system without more extensive modeling of the overall system.

In recognition of this limitation a simple low gain controller was de-

signed to slightly increase the damping ratio of the lightly damped low fre-

quency coupling mode. The controller consists of a simple lead-lag filter

with a lead break at .1 radians/second and a lag break at 1 radian/second.

The magnitude of the return difference of the second level closed loop system

is shown in Fig. 4-6, and indicates a 30 db reduction in sensitivity at .11

radians/second. The magnitude of the transfer function of the second level

closed loop system is shown in Fig. 4-7. This figure illustrates the reduc-

tion in the peak of the coupling mode. The closed loop eigenvalues corres-

ponding to this coupling mode are:

-.063 ± .318J

61



40.0 I I I I I 1 1i I II I I 1I

20.0

ILL

-2e.0 I I I I I II I I I 1 I I

0.1 0.2 0.5 1. 2. 5. 18.
FREQUENCY (rad/sec) R-2557

Figure 4-6. Magnitude of the Second Level Control System Return
Difference

0-2.0 _

.

-40.0

0.1 0.2 0.5 1. 2. 5. 18.
FREQUENCY (rad/sec) a-zss

Figure 4-7. Magnitude of the Second Level Transfer Function

62

"Z



SECTION 5

SUMMARY

This report has initiated a study of the problem of robust decentralized

control system design for large space structures that will be assembled

iequentially. The salient features of this problem are the general system

characteristics of a LSS, the requiremeit that the control system be com-

pletely decentralized, and the requirement that the decentralized control sys-

tem must stabilize the total structure as well as a partially assembled

structure.

All of the relatively few studies of robust decentralized control have

concentrated on theoretical studies of generic decentralized systems, with

only mild assumptions about the structure of the underlying system. While

such results are important (and have been used in this report), they can be

conservative when a problem possesses move specific system structures. The

research presented in this report has identified and used system and error

structures that will be generically present in the problem of decentralized

control system design for sequentially assembled large space structure. The

system structural analysis was conducted qualifatively using the infinite

dimensional singular perturbation analysis of the Appendices and [8]-[9].

The system structures were evaluated for their ability to support a completely

decentralized control architecture and one such structure was chosen for

detailed analysis and design.
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The conceptual methodology for robust decentralized design that was pro-

posed in this report requires the identification of all significant error

sources and performance measures, the quantification of the possible detri-

mental effects of the errors on the decentralized design, and the decentral-

ized synthesis of a control system that minimizes the detrimental effects.

These dominant error sources were identified: unstructured modeling error,

,subsystem modeling error induced by the interconnection of the subsystems, and

t~e neglected interconnection dynamics. Appropriate analysis tools were

identified or developed for each error source. Both the unstructured error

and neglected interconnection dynamics were quantified using existing results.

The subsystem errors induced by the interconnection were sufficiently large

that the structure of the error had to be exploited. This structure was

identified and a new robustness analysis technique was developed to produce a

less conservative quantification. The three separate analyses were then

combined using the integration theorem that was derived in Section 3.

These analysis procedures were applied to a specific example. The

analysis results were used to specify design constraints for the decentralized

synthesis problems. A decentralized design was then developed with the

specific objective of testing the ability of the analysis results to predict

the properties of the true closed loop system. The properties predicted by

each of the individual analyses and the integrated analysis were accurate.

Several extensions to this work should be pursued. First, the design

methodology and analysis tools have only been applied to a single, simplified

problem. A more complete problem which incorporates more realistic models,

error sources, and control objectives should be addressed. Secondly, only the

completely decentralized control architecture has been studied in this report.
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As noted in Section 2, this architecture requires a specific system structure.

Other control architectures, such as a partially overlapping control system,

may be useful for other system structures and for relatively homogeneous

systems. The issues raised by the interaction of such system structures and

control architectures need to be examined. Finally, the possibility of using

hierarchical designs for enhancing the control system performance following

the subsystem assembly is promising and warrants further study.
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ABSTRACT

This paper examines the spectral decomposition of a class of operators

that depend on a small parameter c. The convergence of the elgenvalue-

eigenvector pairs as £+0 of these "stiff" operators, using the terminology of

[7]*, is investigated with the objective of sheddding light on the singular

behavior.

*References are indicated by numbers in square brackets, the list appears at

the end of this Appendix.
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SECTION 1

INTRODUCTION

This paper considers the eigenvalue problem of the so-called "stiff"

operators using the terminology of [7]. Their dependence on a small parameter

e suggests some spectral "separation". This last intuitive idea is fully in-

vestigated in the sequel.

Many physical problems can be described by models containing stiff

operators. Examples of such problems in distributed parameter systems are

numerous. Without being exhuastive, the exanples include the following:

1. Interfaced media having very different properties from one
region to another, such as diffusivity in heat conduction or
permittivity in electromagnetic wave propagation [3].

2. Continuous stochastic problems when the noise intensity level
is different from one part to another of a medium [2].

There are several motivations for studying the present eigenvalue prob-

lem. First, the "singular" behavior of stiff operators can be better under-

stood by investigating thier spectral decomposition as a function of C.

Second, it is well-known that the' solution of a boundary value problem can be

expanded, at least theoretically, in infinite series of the eigenvectors. The

presence of a small parameter may be advantageous because the aforementioned

solution may also be expanded in fractional powers of e, depending on its con-

vergence as c+O. Therefore, it is important to analyze the convergence as e0

of the eigenvalue-eigenvector pairs of stiff operators.
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The eigenvalue problems involving several perturbed operators has been

studied in the literature [41-[6J, [8) and the references therein. However,

the spectral analysis of stiff operators seems to be new. In the sequel, a

general formulation of the eigenvalue problem of stiff operators is presented,

using bilinear forms to avoid cumbersome and complex boundary and interface

conditions. The properties of the eigenvalue-eigenvector pairs as functions

of C are analyzed.

This paper is organized as follows. The eigenvalue problem formulation

of a class of stiff operators involving two bilinear forms is presented in

Section 2. In Section 3, the convergence of the eigenvalues and their

corresponding eigenvectors as c+O is investigated. In Section 4, a numerical

analysis of the operator of Example 3-2 is undertaken to illustrate some of

the properties discussed in Section 3. Finally, the last section contains

some concluding remarks.

I.A-

'oI
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SECTION 2

EIGENVALUE PROBLEM FORMULATION

In this section, the eigenvalue problem of class of stiff operators is

formulated. Let V, H be two given real Hilbert spaces such that V is dense in

H and

Al) the injection of V into H is compact.

Let V* denote the dual space of V. After identifying H with H*, one has

A2) VCHCV*.

Let ai(,+,), i = 0,1 be two forms on V such that the following assumptions

hold:

A3) ai($,*) is bilinear, symmetric on V

A4) ai(C,) is continuous on V, i.e., there exists 0i such that

ai(¢,*) 4 01 K¢IV I*KV, V~ev, V~ev

A5) ai(f,¢) ) aipi( )2 , where ai > 0 and pi(') is a continuous semi-norm

on V

A6) po(f) + pl(¢) is a norm equivalent to **IV

A7) ai(*, ) - 0 on ViCV, where Vi is an infinite-dimensional subspace of

V, i-0,1.

A8) If * I-1-L 0() is a continuous linear form on V, null on V0 , there

exists WCV (modulo V0 ) such that

a0(t,*) - LO(*), VACV
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Let ae(*,*), a(f,*) be defined as

ao(,*) + caj( ,*) (2-1)

a( ,i) = ao( ,*) + al( ,*) (2-2)

Now some important remarks clarifying the above assumptions and

definitions are in order:

Remark 2.1:

It can be easily seen from (A3-A6) that ae(, *), a(+,*) are bilinear,

symmetric, coercive and bounded on V. In particular, for sufficiently small

Cthcy Catisfy

2 2
aclKV < ae( , ) < vlIV , V4cV (2-3)

2 2
al UV < a(*, ) < vlH V  , VfcV

4where a (resp. v) is independent of c and depends solely on ao, al (resp. V0,

vl) and the semi-norms p[(-), i - 0,1.

Remark 2.2:

The bilinear forms ae(*,+), a(*,*) define selfadjoint operators [11

AO, ACL(V;V*),

i.e.,

ae(*,') = (Ace,*) , V *, 4 C V

(A ,'), V *,* C V

where (-, .) denotes the duality pairing between V and its dual V*. From the

preceding remarks, one concludes that the spectra of AC, A are subsets of ]R+,
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consisting only of the point spectrum [11, [51, [121. The eigenvalue problem

for AC is, then, to seek {yk, Xk} c + x V such that
C £

AcXk =kxk . (2-4)

The equivalent variational formulation is

ae(xk,f) = yk(xk, *) v¥cv (2-5)

Now, some well-known facts are summarized in:

Proposition 2.1:

If (Al-A6) hold, then there exist unique sequences {yk}=  c I+,
e k=I

{xk} = C V such that (2-4) (or, equivalently, (2-5)) is satisfied.
c k=1

Furthermore,

1) 0 < 1 y2 < ... , lim yk
C C k++= C

2) {xk)1 is a complete orthonormal set in H, i.e., in particular

c k=1

(xk,x*) 6 kZ (Kronecker delta)
£ £

3) The multiplicity of each eigenvalue is finite

4) The eigenvalues satisfy the following minimax formula:

yk min max ac(X,X)
C WCV, dim W-k X c V IXI -i (2-6)

H

Proof: See [1], [5], [12]

Remark 2.3:

It is noteworthy to mention that Prop. 2.1 is valid for any positive

value of c, e.g., e-I. In this case, the eigenvalue-eigenvector paiL of A is

obtained.
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SECTION 3

SPECTRAL ANALYSIS OF THE OPERATOR AC

This section starts with a series of lemmas which characterize the

various properties of the spectrum of Ac. Then the convergence of the

eigenvalues and their corresponding eigenvectors as e O is stated and proved

in Theorem 3.1. Some typical examples are given at the end of this section

to illustrate the ideas.advanced in the course of the present analysis.

One w~ay to gather information about the behavior of a single eigenvalue

as e+O, is to bound it from below and from above by known functions of e.

This task is accomplished in:

Lemma 3.1:

For sufficiently small positive c, the following estimate holds:

Eyk 4 yk C yk
e (3-1)

for k - 1,2...., where (yk}" are the eigenvalues of the operator A, i.e.,
k-l

they satisfy

ao (pk,#) + al(pk,*) yk( k,), V * £ V

Proof: For sufficiently small e, one has

ca(+,) I ac(#,+) 4 a(*,#) , V # C V (3-2)

Using the minimax characterization of eigenvalues (2-6), one readily deduces

(3-1) from (3-2).

A-8
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Now an upper bound for the eigenvector norm in V is derived:

Lemma 3.2:

If Xk is any normalized eigenvector of Ac, corresponding to yk, i.e.,
c

IIxk H = 1, then

aclxkl 2 < yk < yk (3-3)
cV c

for k 1,2,...

Proof: For each k, the sequence yk is bounded by Lemma 3.1. Let X = k in

(2.5) to get

a (xk,xk) - yk(xk,xk)

= k ( yk

Now one easily gets (3-3) by using (2-3).

At this point, the tools necessary for finding the limits of the eigen-

values are available.

Lemma 3.3:

The sequence {yk}- is decomposable into two subsequences (yk}-
£ k-i c k-i'

{I1k}* such that, for each k,
c k-i

lim Xk . 0 (3-4)
C+O C

lim Pk . ijk > 0 (3-5)
C+O C 0

k - 1,2,...

Proof: The following three-step contradiction argument is used to ascertain

the above lemma.
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1) Suppose lrn yk 0, k = 1,2,... . Let V -V 0$V 1, where the ortho-
e+ 0

gonality is that of V. Take v c V1 and write it as
0

v = E (v,xk)Xk (3-6)
k=1 C C

with this choice of v, the following inequality holds:

ae(v,v) =ao(v,v) + cal(v,v) > C (3-7)

for some strictly positive constant C, which is independent of c.

Using (3-6), ae(v,v) ; yk(v,Xk)2, which converges to zero as e.O,
k=1 C

contradicting (3-7).

2) Suppose lim, yk iyk > 0, k - 1,2... . Select v C V0 and write it as
C+0 C 0

in (3-6). It is clear that the following inequality holds:

ae(v,v) = E kvX) > C (3-8)

k=1 C C

for some strictly positive constant C, which is independent of e. However

ac(v,v) - £ai(v,v), which converges to zero as e+0, contradicting (3-8).

3) Suppose lini yk -0, for k 1,,.,,without loss of generality.
C+

Let

Vt - span(-Xi 3A2,%...,Xx

Select v e vi nl V1 and repeat step 2, to conclude that VX is infinit dimension-
0

al, unless V0 is degenerate (i.e., finite-dimensional). An identical argument

can be advanced to contradict the possibility that (3-5) is true for

k-1,2,...,X (X. finite).

Now decompose {yk, Xk)- into (Xk,,ky* if lim yk 0 and into
C e k-1 c c k-1 CI: {pk,+kl' otherwise.

c c k-1
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Some attention must be focused on how Xk converges to zero, k = 1,2,...
C

Lemma 3.4

The sequence Xk converges to zero with a linear rate Ak, i.e.,

Xk = Akc + o(c) , k = 1,2,...

C I

Proof: By Lemma 3.1, one may assume, without loss of generality , that

Xk = XkCv + o(C) (3-9)

C I

with v e (0,I). In order to, complete the proof, it suffices to show that v=1.

If *k is a normalized eigenvector, i.e., (,k, fk)H = 1, corresponding
CC e

to Xk, then
C

Xk ao(fk, *k) + cal( k,fk) (3-10)
C C C C

from which one observes that

ao( kok) 4 0(C V)  (3-11)

C C

Therefore, ao( k,f k ) + 0 as c + 0, which implies
C C

po (k) + 0, as c + 0

0 C

by (A5). Using (A6), one has

p (fk) > C (3-12)
1 C

for some strictly positive constant C, which is independent of c.

Suppose that v < 1. Then, from (3-9)-(3-12) one concludes that

A-I
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Xk = Xkcv + o(e)
C I

= ao( k,,k) + o() (3-13)

Sk

From this, there exists an element of V, -k = - such that
C v/2

Xk = ao( 4 k, 'k) + o(cl-v)

However, such a claim is false because

)H = + += as + 0.

C

Since the injection of V into H is continuous, kAfv ++ as c + 0. In
C

conclusion, there is no element of V such that (3-12) is satisfied.

Remark 3.1:

For v < 1, the major contribution to Xk is supplied from VI (c.f. (3-13)),
C 0

but the norm of the contribution is concentrated on V0 (c.f. (3-12)), which is

the paradox.

Hereafter, the focus will be on the asymptotic behavior of the eigen-

vectors. The following lemma sumtarizes the norm bounds of the eigenvectors:

Lemma 3.5:

Let (Xk,,k}- {Uk,* k' be as in the proof of Lemma 3.3, with the
% Ck e E k-1

eigenvectors normalized in H. Then, for sufficiently small c, the following

estimates hold:

1) Ifklv 4 C, (3-14)
C
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2) , u kuv 4 C2 (3-15)
C

k = 1,2,...

where C1 , C2 denote constant independent of c.

Proof: Use Lemmas 3.2-3.4.

The forthcoming theorem is the main result of this section. It states

the convergence of the eigenvalues and their corresponding eigenvectors as

£+o.

Theorem 3.1

Let (Yk}=  be the'eigenvalues of Ac and {xk)' the corresponding
c k=I c k=i

normalized system of eigenvectors. Then, given a sequence of e converging to

zero, lyk,xk} can be decomposed into two subsequences tXk,,k)' and
c c k=1 e c k=1

{ok,jk} which have the following asymptotic properties, for each k:
e c k=1

1) Xk + 0 linearly in e, *k + *k weakly in V

2) k + pk > O, *k + *k weakly in H
C 0 C

where ( k} and ({k} satisfy

aj( k,X) Xk(fk,x), *k c V0CV, VX E V0  (3-16)

ao(,k,X) pk(*k,x), *k c HjCH, VX c V. (3-17)
0

Proof: Using the fact that Ifk 1H = 1, and the estimates (3-11), (3-14), one
C

conludes, that, given a sequence of e converging to zero, *k + 4k weakly in V
A
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(hence strongly in It by compactness). From (3-11), it results that *k c V£ .

By Lemma 3.4, Xk is asymptoticalty equal to XkC. Hence (2-5) degenerates into
C I

(3-16) in the limit. Now,

Ik ao ( k,k) + ca (*k,*k) (3-18)

C C C 1 C C

for *k normalized to I in H. Since pk is 0(I), using (3-18) and the minimax
C C

characterization of eigenvalues, i.e., (2.6), it results that ao(*k,*k) is
C C

0(1) and al(*k,*k) is 0(-) or equivalently
Ce C

p (*k) = 0(1) (3-19)
0£

P( k) 0(-)" (3-20)

Hence, the estimate (3-15) is 'ight. Therefore

R kav + C + 0. (3-21)
C

Note that ,k also satisfies
C

ao(*k,X) + Ca (xk,x) p pk(*k,x), V X £ V.
C 1 C £ (3-22)

From (3-19)-(3-20), one deduces that ao(*k,x) is bounded as c + 0 andI C
al(*k,X) is 0(-). Since 1kH - 1, taking formally the limit as c + 0 in

£ ,f€ S

(3-22) yields:

ao(*k,X) u k(*k,x), V X £ V (3-23)
0

where *k £ H1 (a subspace of H).

A-14
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Now consider the following boundary value problem

ao(vkX) + cal(vkX) - uk(kX), V X C V
C C 0

which admits a unique solution vk c V for positive values of c. As ; + 0,
vk + *k strongly in H.

C

Let wk = k _ vk , which satisfies

a o (wk,x) + cal(wk,X) = Ik(*k _ 41,x)
C C C £

+ (Ik - Uk)(*k X), V X C V.
C 0

The left-hand side of this equation goes to zero as c + 0, implying

(,k - *k,x) + 0 as c+0.

Therefore

*k + k weakly in H.
C

The results of Theorem 3.1 hold for negative powers of c as well. To

illustrate this claim, let

1
bc(,X)= - b-l(,X) + bo( ,*)

where bi( ,X), i=-l, 0 satisfy (A3-A7). Then, one has:

Corollary 3.1

Let {vk}" be the eigenvalues and {xk}** the corresponding normalized
c k-1 c k-I

eigenvectors, derived from

bc(xk, ) - vk(xk,.), y * £ V
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then, given a sequence of c converging to zero, {vk,xk}* can be decomposed
c e k=l

into {Xk,fk}=  and (fk,xk}= , with the following properties:
e c k=1 c c k=l

1) Xk + Xk > 0, *k + f weakly in V
C 0 C

k
LI-I

2) Uk = + 0(1), Xk + Xk weakly in H
C C

where {¢k}=  and (xk}=  satisfy
k=I k=I

bo {¢k,X) = Xk (,k,x), *k C V0 , V X E V

b-l(xk,x) - pk (k,X), *k C Hl, V X e V
-I

Proof

Let ai( ,x) = cbi-l(,X), i=O,l and *k = C vk in Theorem 3.1 to get the
C C

desired results.

Remark 3.2:

The weak convergence in Theorem 3.1 cannot be improved in general. This

,4 will be illustrated by Example 3.2.

Remark 3.3:

A careful examination of the steps of the analysis undertaken in the

present section yields the following observation: the weak limits (4k} ,k= I
{1k}= form an orthonormal system in H. This remark is of paramount impor-

k= 1

tance in approximating the solution of boundary value problems involving the

operator Ac.

Now some examples are given as concrete illustrations of the above

abstract results. Only operators of order less than or equal to four are

considered, due to their frequent usage in modeling of physical processes.

A-16
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Let 9i = Q09 S be a bounded set in 1Rn with boundary r = roUri. the

manifold S denotes the interface between % and Qlj, as indicated in Fig. 3-1:

Example 3.1: A second order operator

Let H = L2(Q), V =ISI
0

al( ,I =-E- dx, i = 0,1

jl fli aXj Dxj

then (2.4) becomes:

- k tyxc k xk on %I
CO C CO

CA Xkl yk xk on~ Q

Xk0  = 0, 0

on S

3v 3 (3-24)

where: A stands for the Laplacian in ]Rn.

S v is the unit normal on r or S, outward relative to 00.

I In this example, (3-16) becomes

*k -0 on 1

0f Xk kon 1

-k 0,k 0

I1rl I 0 (3-25)
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(a) (b)

Figure 3-1. Examples of Interfaced Sets

which is a Dirichlet eigenvalue problem for the Laplacian operator in Ql1. The

subspace V0 of V is:

V0  X C V X = 0, X1 c HI 01j))
0

The conclusions of Prop. 2.1 are applicable in this case. Hence {k in a
1 k-1

complete orthonormal system in L2(aj).

Equation (3-17) becomes

-A 't.k Ijk k on 7

1 0 0

k 0  on l

I rO a- I~ - S -(3-26)
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which is an elgenvalue problem with mixed boundary conditions for the

Laplacian operator in S1O. Again, the conclusions of Prop. 2.1 are applicable

in this instance, provided the interface S is sufficiently smooth. Therefore,

{Ik}' form an orthonormal system in L2(gO). It is noteworthy to observe

0 k=l

that *k = 0 because *k must be orthogonal (in L2 (Q)) to 01, £=1,2,...
I

The subspace H1 of H is then

ax0
Hj = {X e H: X0 c HI(%;r0 ), - = 0 on S, Xi = 0}

Remark 3.4

In Example 3.1, one can consider

ai( ,E) = E f ai dx, i 0,1

J-1 k=l Qi Jk axj axk

which ai satisfies
jk

1) at  e Cl('f i )
jk

2) ai  = aij k kj

n n n

3) £ .a I  J~k > El 012,a > O, V 4 C IRn , 4 0 .
j I k=l Jk k-l k

The discussion therein remains unchanged.

Example 3.2

Let 0 - (-1,0), al - (0,1) s - w0}, ro - (-1}, ri - (1). Then the

solutions of (3-25)-(3-26) become respectively
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Xk = (kW) 2

k = 0
0

k= 2"sin krx
I

k = ((2k-l) v/2)2

0

k= cos[(2k-1) wx/2)
o

Ok = 0

11

The exact eigenvalues *k must satisfy 
the following transcendental equation:

2

cos isin + V-sin os 0. (3-27)

It is not possible to solve for Xk as 
a function of e. However, for some

sequences of E, e.g., c - 1/(41+1)2 , 1 an integer, (l , *1 1 given below is

an exact eigenvalue-eigenvector pair

ul .(..)2
CZ 2

*1 0 = Cos - x
CL 2

0-COS -X

Cz 21c- (3-28)
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Observe the oscillatory behavior of *1 as X + -. This is the manifesta-
eXI

tion of its weak convergence in (L2 (ill)) to zero. Furthermore, this example

shows that {1 k}* are not analytic functions of e. Consequently, the task
e k=1

of finding these eigenvectors (in order to solve boundary value problems)

is impossible. The alternative is to use the weak limits of (Xk} =  and
e k=1

{,k}- to "approximate" the solutions of boundary value problems involving
k-IIstiff operators. This is will be the subject of a subsequent paper (see [91).

tI
Similarly, for Ek - k=1,2,..., {Xk , *k } given below is an exact

k2 '  
£k Ek

eigenvalue-eigenvector pair

Xk.(w)2

Ek

k 'k sin v'e kwx
ekO

*k -sin kwx

CkI (3-29)

Note that in (3-29), Ck depends on the index of the eigenvalue. Hence,

one cannot let Ck go to zero and observe what happens to this

eigenvalue-eigenvector pair. However, the following conclusions can be drawn.

First, the results of Theorem 2.1 show that *k + 0 in the present example.
sO

This is certainly reflected in (3-29) by the presence of the factor fck

multiplying *k . Second, the presence of /,k in the argument of the sinCk0

function in (3-29) indicates that "flattening" occurs in k as e + 0.

Example 3.3: A fourth order operator

Let i = L2 (S), V - H2(g)
0

f AOA* dx, i 0,1
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then (2.4) becomes:

Ak =ykxk on 0

C4 c k2x = ykxk on Q

a xk

£0 k £ 0 Oon ro

a x k

xk = el - 0on r.
e1 av

3xk 3Xk

xk .x C- -

£0 £1el av 3v

BAxk a~xk onl S

Axk =£ AXk OC
C0 £1 a av (3-30)

Equation (3-16) becomes

*k - 0 on Q
0

&2 k - Xk~k on fl1

II a-2



Equation (3-17) becomes

A2*k . k k on go

2k = 0 on ro

!

Ok  = o onr 0

0 3v

= 0 on S
0 3V (3-32)

Identical comments to those of Examples 3.1-3.2 can be made here, provided the

function spaces are changed to reflect the increase in the operator order from

two to four (as seen in (3-30)).

Remark 3.5:

Some of the properties discussed in this section are shared by many other

stiff operators, which do not fit in the axiomatization of Section 2 (c.f.

[9]).
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SECTION 4

NUMERICAL RESULTS

In this section, Example 3.2 is analyzed numerically, using the Finite

Element Method, to supplement the analysis undertaken in the preceding

section. The set 9 - (-1,1) is divided into N equal intervals of length

2
h = -. The roof functions {fi} N-i [I1], [13] are selected as a basis for the

N h i-1

finite dimensional approximation of H1 (0). The finite dimensional approxi-
0

mation of the operator AC can be written in matrix form as

Ah - (Mh) -lKh
e (4-1)

where the entries of Mh are

(Mh) - f*iJ dx
i~j a h h

ij - 1,2,...,N-1.

In the forthcoming example, the matrix Mh can be written explicitly,

i.e.,

4 1 0

h 1 4

Mh h 1
6

14 1

0 1 4

A-24

Asi



For all computer runs, N is selected so that an accurate plot is obtained (N

is indicated under each plot). The subroutine RSG from EISPACK with single

precision is used to compute the eigenvalues and eigenvectors of Ah.
£

Example 4.1: (Refer to Example 3.2)

In this example, the entries of Kh are
£

d~i d i

(Kh) =f a(x) - dx
Q i,j dx dx (4-2)

ij 1,2,...,N-1

where

I if x c(-1,O)
a(x)

a if x C(0,l)

For N even, Kh can be written as

2 -1 0
-1 2

I -1 0 N
Kh -1 I+C -C + - + (4-3)

£ h 0 -e -2c 2

2e -e
0 -c 2c

The eigenvalues X1 , X2, ol are tabulated in Table 4-1 for £ = 0.1,
C C C

0.04, 0.01, 0.001. The corresponding eigenvectors are plotted in Figures

(4-la-4-1d), (4-2a-4-2d), (4-3a-4-3d).
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8.

Figure 4-l, * for £ 0.04, N 50
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1.0. .5

Figure 4-1c. *1 for c = 0.01, N = 100

c

-1.2 -0.5 3.3 1.5 lA.a

Figure 4-id. *i for e = 0.001, N - 150
£
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IFigure 4-2b. *2 for c -0.14, N -50
c
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f l a l 4 -3 - ,

Figure 4-2c. *2 for c 0.01, N 100

I- -

Figure 4-2d. *2 for £ 0.001, N -150
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Figure 4 -3a. *1L for e -0.1, N-=50

Figur 4-b -1fre 00,N 5
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t~a- A

- .S-

-I .9-.9; 9.3 0I.5

Figure 4-3d. *1 ffor c 0.001, N 10
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TABLE 4-1. Of, X2 , ui for = 0.1, 0.04, 0.01, 0.001
C E C

e

0.1 0.77230 4.5742 2.3462

0.04 0.36160 1.3715 2.4782

0.01 0.09650 0.38677 2.2153

0.001 0.01069 0.03997 2.2538

It is clear that most of the features described in Section 3 are

exhibited in these plots. First, observe the attenuation of *k, k = 1,2 as
e

e + 0 on 00. Second, note the oscillatory behavior of I as c + 0 on 91.

Furthermore, one may add that the first eigenvalue-eigenvector pairs are

computed more accurately than their last counterparts (13]. Consequently, if

the eigenvalues of Ah are ordered ascendingly, {u1 ,*I) is pushed higher and
e C

higher as e + 0 and hence computed less and less accurately. Moreover, since

h is fixed, the oscillatory behavior of *1 would not be captured by this
e

approximation, unless h is made smaller and hence increasing the order of the

matrix Ah.
C
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SECTION 5

CONCLUSION

The eigenvalue problem of a class of stiff operators has been analyzed in

this paper, via a general formulation using bilinear forms, to avoid the com-

plexity of expllctly keeping track of the various boundary and interface

conditions. First, the intuitive idea that the eigtnvalues of stiff operators

are of different order of magnitude as functions of the parameter C, is

rigorously verified. Second, a terminology is introduced to describe the con-

vergence of the eigenvector as e + 0, i.e., flattening, alternation and oscil-

lation. This analysis is of paramount importance, because it will yield in-

sight into how to approximate boundary value problems involving stiff

operators.
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ABSTRACT

In this paper, asymptotic approximations for a class of linear stiff

systems are constructed, using the weak limits 
of the eigenvectocs of the

associated stiff operators.
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SECTION I

INTRODUCTION

A standard approach in solving many boundary value problems of mathemat-

ical physics is to employ eigenvector expansions. When such problems contain

one (or several) small parameter e, asymptotic expansions in (fractional)

powers of e can often be a powerful approximating process.

In a previous paper [5]*, the spectral decomposition of a class of stiff

operators was investigated. The asymptotic properties of their eigenvalues

and the corresponding eigenvectors were analyzed. More importantly, it was

discovered that some of the aforementioned eigenvectors are not analytic

functions of c. This fact is intimately related to their convergence in a

Hilbert space with a weaker topology. Despite this undesirable property, it

is possible to derive asymptotic approximations of the solutions of boundary

value problems involving stiff operators.

In the sequel, the results of [5] are employed to investigate the beha-

vior of the solutions of the following three formal equati6ns

A€ y = f (1-1)

- + A yc - f ,yc(O) - h (1-2)
at

*References are indicated by numbers in square brackets, the list appears at

the end of this Appendix.
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32ye y
- + AC ye = f  , y(O) = h ,- (0) = g (1-3)
at2  at

where AC is a stiff operator of the class studied in [51.

The occurrence of (1-1)-(1-3) is very frequent in mathematical models

of distributed physical processes such as nuclear reactors, heat exchangers,

chemical reactors, fluid systems, vibration systems, steel and glass proces-

ses, etc. Thus, it is important to focus on them. The major thrust of this

paper is to derive asymptotic approximations of the solutions ye of (1-1)-

1-3). For elliptic problems (i.e., (1-1)), by appropriately modifying the

weak limits of the eigenvectors, one may be able to compute an asymptotic

expansion of any order for ye. In so doing, the formal results obtained in

[3] are complemented. For revolution problems (i.e., (1-2)-(I-3)), the con-

cept of wedk solutions [2J,[41 is used to define zeroth order approximations

of the solutions of (1-2)-(1-3), which depend only upon the weak limits of

the eigenvectors.

This paper is organized as follows. In Section 2, the main results of

(5] are briefly reviewed. In Section 3, the solution of (1-1) is derived.

In Section 4, the convergence of the solution of (1-2) is investigated and an

asymptotic approximation is constructed for it. In Section 5, an analysis

similar to that of Section 4 for a class of hyperbolic problems (i.e., (1-3))

is undertaken. In the last section, some concluding remarks are presented.
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SECTION 2

REVIEW OF PREVIOUS RESULTS

Let V, H be two given real Hilbert spaces such that V is dense in H and

Al) the injection of V into H is compact.

Let V* denote the dual space of V. After identification of H with H*, one has

A2) VC HC V*.

Let ai(t,*), i = 0,1 be two forms on V such that the following assumptions

hold:

A3) ai(t,,) is bilinear, symmetric on V

A4) aj(*,,) is contiuous on V, i.e., there exists 0i such that

ai(o,*) < 01 IfIV K*KV, V ¢V, V$¢V

A5) ai(o, ) > aipi(*) 2 , where ai > 0 and pi(') is continuous
semi-norm on V.

A6) po(O) + pi(f) is a norm equivalent to I*IV

A7) ai(o,t) - 0 on ViCV, where Vi is an infinite-dimensional
subspace of V, i-O,1.

A8) If * I-L o (,) is a continuous linear form on V, null on V0 ,
there exists *cV (module V0 ) such that

ao(f,t) = Lo(*), VfcV

Let ae(,*) be defined as

ac(#,*) - ao( ,*) + c al(*,,) (2-1)
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Remark 2.1:

Clearly, the form ac(f,*) is bilinear, symmetric, coercive and bounded

on V. Hence, it defines uniquely a selfadjoint operator AE

Ac e L(V;V*)

i.e.,

ac(f,*) <AC ,4> , for all *, c V

where <.,-> denotes the duality pairing between V and its dual V*.

From the above remark, one concludes that the spectrum of Ac is a subset

of +, consisting only of the point spectrum [1).

The eigenvalue problem for AC is, then, to seek {yk,xk} C ]R+ x V
c c k=l

such that

A xk =yk xk (2-2)

or equivalently

a (xk,) - yk(xk,*) , for all y c V (2-3)

Now the properties of {yk,xk} are summarized in:
E £ k-I

Theorem 2.1:
ooo

Let (yk) be the eigenvalues of Ac and {Xk }  the corresponding nor-H k-l c k-1

malized system of eigenvectors. Then, given a sequence of c converging to

zero, {yk,xk} can be decomposed into {Xk,0k} and {pk,*k} such that,
c e k-1 e c k-I c e k=1

for each k,
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I) Ak -; 0 linearly in c, fk + *k weakly in V
C C

2) pk + Ik > O, *k + *k weakly in H
0 £

where { k} and {[kk satisfyk=1 k=i

a (,k,x) = Xk(,k,x), *k C V C V, for all X c V (2-4)
I 1 0 0

a (*k,x) = pk(*k,x), *k c H C H, for all X c V (2-5)
0 0 1 1

Moreover, the following estimates hold for e > 0:

3) 3,k < C (2-6)
,v 1

4) re- k 4 C (2-7)
ev 2

where C1 , C2 are two positive constants, independent of c.

Proof: See [5].

Remark 2.2:

The subspace HI of H in (2-5) is uniquely determined as the span of

.

k-I

Remark 2.3:

The weak limits { k} and {*k} form an orthonormal system in H.
k-I k-I

i
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SECTION 3

ELLIPTIC BOUNDARY VALUE PROBLEMS

In this section, an asymptotic expansion of the solution ye of

A ye =f f fCli (3-1)

or equivalently

ao(ye,f) + c-al(ye,*) - (f,f) c V , for all f c V (3-2)

is desired. This problem is studied in a more general context (namely without

assumption Al) in [3].

The modifications of the weak limits of the eigenvectors are now con';id-

ered. Since q k e HI one may add to it a function

-k .. £ + k + C2 &k +*, (3-3)
e 0 1 2

where

k C Hsuch that*k + tk eV (3-4)
0 0

Ck V , I - 1,2,... .(3-5)

This amounts to solving the following boundary value problem, using the iter-

ative process of [3]:

a (*pk+Ek,X) + c a (*k+tk,X) U k(*,k,x) for all X e V (3-6)
0 e I C 0
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Consequently, ,{gk} satisfy
t =0

a (k,x) = 0 , *k + Ck C V , for all X e V (3-7)
1 0 0 0

a (&k,) =-a (Ek ,X) , for all X cV
0 1 1 L-1

a (ek,X) = 0 , for all X C V
I t 0 (3-8)

t = 1,2,...

k f 1,2,...

Remark 3.1:

It is worthy of mention that the iterative process described by (3-7)-

(3-8) appears to average the oscillatory behavior of *k [5].
£

Similarly, one adds to fk

ek = ek,+ £2 ek + ... (3-9)
C 1 2

-where

ek £ V t = 1,2,...

The function ek is chosen such that
C

a (.k + Ok,x) + C a (,k,x) £ Xk(,k,x) , for all X c V
0 C I 1

from which one concludes (using the fact that *k £ VO ) that (8k)
t t=1,k=

satisfy
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a (ek,x) = a (,k,x) foc all X C V
0 1

a (Ok,x) 0 , for all x c V
1 I 0

a (ek,x) =- a (ok ,X) , for all x V
0 X 1 X-f 

(3-10)

al(Ok,X) = 0 , for all x c V

P = 2,3,...

k = 1,2,...

Remark 3.2:

The zeroth term in (3-9) is zero because *k C V.

Remark 3.3:

The iterative process presented above appears to average the flattening

(and attenuation) of' [k} [5].
c k=1

Before proceeding further, consider the following example to examine what

(3-7)-(3-8), and (3-10) yield:

Example 3.1:

Let H - L2(a), V - Hl(A) where - cO U fl U S, r ro Ur1 as indicated
0

in Fig. 3-1. Let

aj(,)" - f dx
J-1 l- i axj 3xj

B-10



A0

(a) (b)

* Figure 3-1. Examples of Interfaced Sets

then (3-7)-(3-8), and (3-10) become

C- 0 on Q
00 0

-Aj Ck 0 on 9
01 1

C l = 0 P k JJ *k11,0 1 01 0 0

un)



-A Ek = 0 on Q
to 0

k a

to r av s av s

-Erk =0 on 9i

Ek = 0 , k1 S E0 IS

-A ek =0 on n

10 0

kI k

, kk 0

10 r a0 S

-A ek = 0 on Q
110

0k = 0 , I- S -0

- k -0 o e
r1 '11S 1
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-A 9k = 0 on 9
tO 0

aek 38kOto 1o-I l
k = 0 , -

tOr @to 0 a S av S

-A Ok = 0 on g
tl I

k 1  =, m k = k

t = 2,3,...

k = 1,2,...

Remark 3.4:

The computation of these modifications is greatly simplified since the

dependence on the parameter e is eliminated.

Now attention is focused into obtaining an asymptotic expansion of the

solution of the boundary value problem (3-1) using the modified weak limits

,& the eigenvectors of Ae.

Theorem 3.1:

For sufficiently small e, the solution of (3-1) is given by

ck dk

ye E - (*k+ k) + 7 !- (fk+ek) (3-11)
k-l uk C k-l CXk C

0

B-13



where

00

{uk,*k} and {k,.k} satisfy (2-4)-(2-5)
0 kul I k-I

{[k} and (ek) are given by (3-3) and (3-9)
e k=1 c kfi

(ckk and {dk )  are the Fourier coefficients of f, i.e.,k=l k=I

ck = (f,*k)H (3-12)

dk . (f,ok)H (3-13)

Proof:

The eigenvectors 0k} and {*kM form a complete orthonormall basis
k-I k-1

of H and *k + ek C V, *k + Ek e V by construction. Now it is straightforward
e C

to verify that (3-11) is the unique asymptotic expansion of ye.

Remark 3.5:

Truncate gk and 8k to the pth term and denote these truncated series,
C C

respectively, by &k,p and ek,p. Definte eP by
C C £

eP Y - P
C C

where

_ _ _ _ _ _ _ck dk
yP £ -- (*k + Ck,p) + I - (.k + ek,p)
e k-1 pk C k-I CXk C

0 1

INote that {*k} must be renormalized in H.
k-I
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Then it can be shown ([31, p. 13) that

KePE 4 C 0P

where C is a constant independent of c.

*Example_3.2 (Example 3.1 Cont.)

In this case, (3-11)-(3-03) become

0ck 00dk

CO k-1 Uk 0 c0 k-1lCXk e0

y w7f kg + lk .( k+ek)
C1 k-1 Uk cl k.1 C~k 1 ci

o 1

where

L2(g) o 0 L2(fl )

dk . (f,O,) - (f *k

Ok k are computed in Example 3.1.
C e
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SECTION 4

PARABOLIC BOUNDARY VALUE PROBLEMS

In this section, an evolution problem of parabolic type is considered.

Hence, let the variable t denote time. It is assumed that t C (O,T), T <

and that all the assumptions made in Section 2 hold. Let L2(O,T;V), L2(O,T;H)

L2(O,T;V*) denote the Hilbert spaces of Lebesgue square integrable functions

with values in V, H, VW, respectively. Let prime denote the distributional

derivative with respect to time [4]. In the sequel, the following parabolic

boundary value problem is analyzed

(y',O) + a (y ,*) + e a (y ,) = (f,$) , for all * € V (4-I)

y (0) - h h given in H (4-2)

y c L2(0,T;V) , f e L2(O,T;H) . (4-3)

Under the assumptions made, problem (4-1)-(4-3) admits a unique solution

c L2(0,T;V) (4]. Using the results derived in Section 2, the convergenceI

of yc as e + 0 is studied. Then an asymptotic approximation of yt is con-

structed and an asymptotic error estimate is derived.

4.1 CONVERGENCE OF ye as £ + 0

As in Sectica 2, let (Ak,fkl and (uk,*k) be the exact eigenvalue-
e c k-1 e e k-1

eigenvector pairs uf Ac with the eigenvectors normalized to one in H.
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Let

y = £ ck(t)*k + y dk(t)fk (4-4)
C k=I c C k=1 c C

f - E (f, k)*k + (ffk) k (4-5)

k=1 C C C C

h = * (h, k)*k + E (h,*k)fk (4-6)

k=1 C C k=1 C £

Sdbstitute (4-4)-(4-6) into (4-I)-(4-3) to find that {c k ) (d k }  satisfy
k-I c k=1

the following ordinary differential equations:

dck+ uk ck = (f,*jk) ck(O) - (h, k)

dt C C C C C

ddk
C

- + Xk dk = (f,.k) , dk(O) - (h,O)
dt C C C C C

k " 1,2,...

whose solutions are

-pkt ' t _k(t-T)

ck(t) -e c (h,*k) + f e C (f,*k) dT
C C 0 C

-Xkt t -Xk(t-T)

dk(t) " e £ (h,fk) + f e c (f,fk) dT
C C 0 C

Using Theorem 2.1, one concludes with no difficulty that

y.C y weakly in L2(O,T;H)
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where

y ck k + 1:drE #
kl k=l

{*kl ,* are the weak limits of {*k) (respectively, {*k})
k=1' k=l ek- c k=1

in V, (respectively, in H) given by (2-4) (respectively, 2-5)

-Pkt ~t -kt
ck(t) e 0 (h,+k) + f e 0 (f,*k) dr

0

t
dk(t) (h,*k) + f (f,.k) dT

0

The preceding discussion is summarized in:

Theorem 4.1:

Let ye denote the solution of (4-1)-(4-3). Given a sequence of e con-

verging to zero,

ye +~ y weakly in L2(0,T;H) (4-8)

where y is given by (4-7). Moreover,

C L2(0,T;V)

Where C is a constant independent of e.

Proof:

Use the eigenvalue-eigenvector pairs of the operator AC and their proper-

ties, as described by theorem 2.1, to obtain (4-8).' The estimate (4-9) is

then readily derived by employing (2-6)-(2-7).
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4.2 ASYMPTOTIC APPROXIMATION OF y

It should be noted that the method by which stiff elliptic boundary value

problems were solved in Section 3 does not yield an iterative process for evo-

lution problems in general. Therefore, one would be content to obtain a "weak"

approximation of the solution of (4-1)-(4-3) using only the weak limits of the

eigenvectors of Ae.

In the sequel, an approximation of the solution of the following boundary

value problem is derived:

aycO
- + AO YcO = f0 on QO

(4-10)
aYel

+ c Al y1 fl on Qj

at

YeO - 0 on E0  ycl i 0 on El  (4-11)

YCO Ycl

on R (4-12)
aycO ayel

aVA0  aVA I

yc(O) - h on 0 (4-13)

where

Qi nlx (0,T) , i -O,1

ri - ri x (OT) , i - 0,1

R - S x (O,T)
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-A = E 1 ak (x) , k= 0,I
k i.1 j.1 axi J 3xj

ak satisfy
ij

I) ak C C1(k)
ij

2) ak = ak
ij ji

n n n
3) E ak ak  Z E2 a > 0

i=1 j=i ij i j i= i k

for all E C A n  , 0

The chief reason for this digression is that one can explicitly specify

the regularity conditions of the functions involved in the construction of the

approximation of ye. However, the concepts involve herein are equally appli-

cable to the general case.

Now, let the zeroth order approximation be denoted by yO f (yO,yO) and
C 0 el

defined as follows:

0
+ A Y0  

f on Q
at 00 0 0

YO - 0 on E
0 0

(4-14)

ay 0
-- 0 on R

yO() -h on n
0 0 0
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ay0

+ C A yO =f on Q
at I ct I I

YO = 0 on ECl 1

(4-15)

yO y on REl 0

yO (0) = h on 9
Cl 1 0

Remark 4.1:

The solution of yO0of (4-14) is regular. Actually, y0 e L2 (0,T;HI(0 ;r0))
0 0 0 0

CL 2(Q ). Hence y0j e L2(0,T;HI/2 (S)) CL 2(R). Problem (4-15) is a nonhomo-
0 0 R

geneous boundary value problem. Consequently, yO has meaning in a weak sense
ci

using transposition [4).

Since the zeroth order approximation yO is weak, one rewrites (4-14)-
e

(4-15) in the proper form, using transposition as follows. Let

ax0
to - X0 : X0 E H

2 ,1(Q0 ) , X0  - 0 , - = 0 , X0 (T) - 0
Z 0  ' AkO R

01 - Xl : XI e H2'l(Ql) , X, - 0 , XI - 0 , Xl(T) - 0

Now consider the following isomorphisms
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0  aXo
X0 I-. -- + A0 X0 from 0 to L2 (Q0)

at

X1 + c Al XI from 01 to L2(Ql)•

By transposition, one concludes that X0 -- MO(Xo), being a continuous linear

form on 00 (endowed with the topology induced by H2 ,1(Qo)), there exists a

unique y0 c L2(Q0 ) such that

0

f Y0  /- ' +AO dQo = MO(XO) , for all X0 C 00  (4-16)

Qo 0 a o

and

1o I-. yO is a continuous linear mapping of
0

0* *-' L2(Q0 ) (cf. Remark 4.2).r0

Similarly, X - MI(xI) being a continuous linear form on 0 (endowed with

the topology of H2 ,1(Q there exists a unique Y0  e L2(Q such that

S 1 ( t A XI dQo M1 (XI) for all X1 e 0 (4-17)

and

M1 = yO is a continuous linear mapping of 0' - L2(Q )
C l 1 1
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Select ?O(Xo) and Ml(Q ) as

MO(Xo0) = f fo0Xo0dQo0 + f ho0xo0(XO)dflo

QO 0

anl
Mlc(x ) = f f X dQ + f h X (x,0)dfl - f YO - dR

C1 Q I 1 10 il11 R 0 "VAl

Remark 4.2:

Since0 *(Q 0 ,0 the dual of 0 is not a space of distributions.
0 0 00

Therefore, the introduction of 0 ris required to interpret duality [4].

It can be easily verified that the solutions of (4-14)-(4-15) and (4-16)-

(4-17) are identical [2).

Now an error estimate between the exact solution ye and its approximation

YO is derived.
C

Theorem 4.2:

Let ye be the solution of (4-15)-(4-16) and y0 the solution of (4-16)-

(4-17). Then, for sufficiently small e, one has

NYC - YON 4 C €l/2 (4-18)

O L2(Q)

where

Q -Q0 X Q1

and C is a positive constant, independent of c.

Proof,:

First, rewrite (4-10)-(4-13) in the weak form, i.e.,
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-  AX 0 00O0

f Y+ A0 dQ = f0X dQ + f h X (x,0)dQ (9Q0 YCO at 0 dO Q0 0 000 0 (4-19)

-, yco

f- X dR , for all X e 0

RavAO 0 0 0

fY + CA dQ + hXl(x,O)dfl
I YgI } Ij xd flxdQ 1  11

11 1 11 (4-20)
ax 1

- f y - dR , for all X c 0

R l A ' I I

Subtract (4-16) from (4-19) and (4-17) from (4-20) to obtain

f IO- y (- tAoX0 -= f a x 0 dR ,for all X0 c 0

(4-21)

- A All - e f 0 - dR , for all X c 0
Qt R1

(4-22)

where the interface condition (4-12) is used.

Now consider the following equations:

axC0
- + A Y -yO on Q
at 0OCO C0 0 0

0onZXCo 0

0(4-23)

---=0 on R

Xo(X,T)= 0

B-24
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aXclI
- -l + e A x =y Y- on Q

at 0 Cel C1 o 1

x = 0 on Eel L
(4-24)

XI = 0 on R

X (x,T) = 0

Since the coefficients of Ai, i - 0,1 are assumed to be sufficiently regular

and y- YO c L2(0,T;L 2 (fl )), Y - y0  C L2(0,T;L 2 (fl )), one concludes that
CO 0 0 l Ci 1

X i L $ , i =0,I

i

Let X0 - x C in (4-21) and Xl X l in (4-22), and use (4-23)-(4-24) to obtain

NY - y01 4 C1 Cl/2
C L2 (Q

0 )

N y O 1 4 C2 CI/2

lC C1 L2 (Q1)

where C, C are some positive constants, independent of c. Hence,

1 2

Nly - you Y f y - + Y I C 1/2

L L2(Q) cO 0 L2(Q0) cl L2(Q1)

Remark 4.3:

It should be noted that (4-18) holds for c small, but strictly posi-

tive, because of the heavy reliance upon the fact that the solution of (4-24)
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belongs to 4 1 It is easy to see that if one formally sets c = 0 in the first1

equation of (4-24), its right-hand side would be in L2(0,T; L2(j )) but X

for e = 0 would not be in 4
I

Recall that it was shown in Section 2 that the eigenvalue-eigenvector

pairs of A , i.e., (yk,xk) are decomposable into two groups {Xk,#k} and
C e k=l cc k=1

(pk,*k .
c ek=

co

The normalized weak limits (in HI(Q)) of {*k} satisfy
0 c k=1

#k =0 on 1

0 0

A fk = Xk 4k on

(4-25)

The normalized weak limits (in L2(jj)) of {*kl obey

C k=1

A jk - jk *k on a
0 0 0 0 0

-0 on S1
0 1

4 0  
(4-26)

* ,- - M0k ro =0 O avAo S

k w 1,2,...

Then the solution of (4-14)-(4-15) may be represented by
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k00

* y0 = ck(t)*k

0 k=1 0

Go T

ck C L2(0,T), E f Ick(t)I2 dt <
k=1 0

y0  = E dk(t) k
Cl k=1 E I

= T

dk C L2(0,T), 7 f Idk(t)12 dt <
C k-1 0 C

In order to determine ck(t), dk(t), let

Xo(X't) = O(t)*k(x), o c Cl([O,T]), e(T) - 0 (so that X c 0

xl(x,t) - v(t),k(x), v C Cl([O,T]), v(T) - 0 (so that X e )

in (4-16)-(4-17) to get

T / O T
f ck - - + Ik dt I (f *k) e dt - (h *k)6(0)

0 dt 0/ 0 00 0 0

fS fTdk (_dv + I T

S dt - f (f f dt -(h k)O
0~i 4 t+ £ ctk  ,*k)v ci ~ ,,k)v(O)

0It 0 1I

T k
-£: f S dS v dr

which are equivalent to

B-27
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tc + pkck .(f k
dt 0 0 1

d k k

.-. +Xk Cdk .(f fk).e E a. d
dt I £ I11 1-1 S 0 3VA1

dk(O) -(h ,.k)
C1

Remark 4.4:

Using the terminology of singular perturbation, a two time-scale decom-

position is achieved. Namely, YO is "fast" and YO is predominantly "slow".

0 C1
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SECTION 5

HYPERBOLIC BOUNDARY VALUE PROBLEMS

In this section, an evolution of hyperbolic type is investigated, namely,

the following boundary value problem:

(y",X) + a (y ,X) + c a (y ,X) = (f,x), for all X c V (5-1)

y (0) = h, h given in V (5-2)

y'(0) - g, g given in H (5-3)
C

y C L2(0,T;V), y' C L2(0,T;H), f e L2(0,T;H) . (5-4)

The present analysis will be parallel to that of Section 4. Hence, the

convergence of y as e + 0 is studied. Then a zeroth order approximation of
e

ay is constructed, using the weak limits of the eigenvectors of A (i.e.,

the operator associated with the bilinear form a (a) a (f,) + c a

(cf. Section 2). As previously indicated, (5-1)-(5-4) have to be specialized

to second order operators A , so that one can specify precisely what is re-

quired for the present analysis to hold. Therefore, the following problem is

considered in the sequel:

32y0
- + A0 y f on Q0

(5-5)

@2Y

t2  1Yl fl on Q1
I £ I I
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co 0 on E 0 C on E (5-6)

YCO =y e

on R (5-7)
aYcO a ycl

avk0  aVA I

y (0) - h , h - (h0,h) , h HI( ) * i = 0,1 (5-8)
C 0 1 1 0 1

aye
- (0) - g g c L 2(g) (5-9)
at

ay

y c L2(0,T; H1(fn)) , - c L2(0,T; L2 (fl)) (5-10)
S0 at

f C L2(0,T; L2 (fl)) (5-11)

where Ai, i - 0,1 satisfy the conditions of subsection 4.2

5.1 CONVERGENCE OF y AS c + 0

Theorem 5.1:

Let y be the solution of (5-5)-(5-11). Then, given a sequence of C
e

convering to zero,

y + weakly in L2(0,T;L 2 (fl)) (5-12)
C

- - weakly in L2(0,T;L2 (fl)) (5-13)
at at

B-30
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Moreover,

v/ - fy II ( c ( -i4)
C L2(O,T; Hi(Q))

0

C is a constant independent of c.

Proof;

Let {xk,fkl and {pk,#k) be the exact eigenvalue-eigenvector pairs
C e k-i C £ k=I

of A , with the eigenvectors normalized (in L2(0)) for fixed e. Using a
C

finite dimensional approximation of y such as
C

m m
ym =E ck *k + E dk k

k1 C C k-1 C £

is is shown in [2] that

ym + y strongly in L2(0,T; H1(0)) as m + +
£ £ 0

C ngyinL£- + - strongly in L2(OT;L2(n)) as m + +
at at

where

y = ck *kk+ E dk fk (5-15)
C k.I C C k-i C E

(ck} , (dk) satisfy the following set of ordinary differential equations
c k-1 e k-i

B-31



d2 c k
- + lik ck . (f,4,k)

d2 C C e

ck(O) - (h,*k)
C C

dc k
C

- (0) -(g, jk)

dt

- + Xk dk - (f,fk)

*dt 2  £ C C

dk(O) - (h, k)
C C

d dk
(0) (g, $k)

dt C

whose solutions are given respectively by

ck(t) (h,*k) Cos t4 Jtt+ -,* fsin f*kd

C~O £ CCF

(5-16)

dt)-(h,*fk) co06 Ak + - sn(f,*k)dT
£ C C V£- Xi7

C (5-17)
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Now, let c be a sequence converging to zero. The convergence property (5-12)

and the estimate (5-14) are easily deduced from the results of Theorem 2.1,

where y is written as

y ck *k + Z dk k (5-18)

k=I k-I

where {ck} , {dk) satisfy (5-16)-(5-17) after letting e + 0, i.e.,
k-I k-I

(g,)tsin p(t-(t

ck(t) (h,*k) cos +- sin 1 pkt + f (f,o)dT
ck~t) (h0k ft 00

T
dk(t) - (h, k) + (g, k)t + f (t-T)(f, k)dT

0

Differentiate (5-15) with respect to time and take limit as c + 0 using the

results of Theorem 2.1 to get (5-13).

5.2 ASYMPTOTIC APPROXIMATION OF y

In the sequel, the zeroth order approximation yO of y is constructed
C £

using the same approach as in subsection 4.2. An error estimate is then

derived. An outline on how to solve for yO using the weak limits of the
C

eigenvectors of A is also given.- Let yo - (yO,yO) be defined by
E CB0 C1

, . B-33



320

-- +A yo = f onQ
3t2  0 0 0 0

YO =0 onE
0 0

(5-19)

- =0 on R
3VAO

yO() = h on
0 0 0

0 0

- (0) = g on Q
at0 0

20

- + e A yO = f on Q
at 2  I el 1 1

yO - 0 on EI I

(5-20)

YO My 0 onR
Cl 0

0
aYC
;t (0) - g, in 91

Problem (5-20) is a nonhomogeneous boundary value problem. Using transposi-

tion, yO is defined in a weak sense as in subsection 4.2.

S1

In order to derive an asymptotic error estimate between y and yO, they
C £

must be redefined using transposition. For this purpose, let
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ax 0  aX0*0 f €X:T: ,T 2 + A X £ 2( ), X0 = 0 on £0'
t 0 : X0 ' L2(0,T; H(l)), - L2(Q ) +AX l L2(Q X 00 at 0 t2  000

ax0 3X0 1

= 0 on R, X (x,T) 0, - (x,T) 0
1VAO 0 at

It Xa b l( rifi Xt + e A s

910T; HI(I I ;-C C ) t L2(Q X =

I t at1

/ax0  ax0

yon E R X (XT) d0, - (x,T) = 0
S1ayt

iiiIt can be easily verified that y ,yO satisfy

C C

f f- A f x dQ - f h - (x,0)dQ

Q0 it2 0'0  Q0  0 0 0 1 1 at 0 (5-22)

fg 0x0(x,0)dA 0 + f y - dR , for all X0 e 0

aQyc  2 X1 axI "

Q, Q,(5-22)

+ -~ x--'~dl C dR ,for all Xlgxx 0 d  c'J Y0 V~

S1 R E VA1

1 is endowed with the topology carried over by the mappingi

*i c L2(0,T; L2(Q )) Xi) i - 0,1
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f YO + A0X dQ fXdQ - f h - (x,)dfl
QO f 00 0 00 at 0Qo 0 (5-23)

+ f gOxo(,O)dQ 0  for all x 0 c

%I0 0 0

f YO I x- dq f f X dQ -f h - (x,O)d.Q
Q at2I I I

(5-24)
ax

+f g x (xO)dfl - f y - dR , for all X, c 1

SI I1  R oa3vA1  1

Theorem 5.2:

Let y , yO be the solutions of (5-21)-(5-24). Then for sufficiently
£ e

small e, the following estimate holds

ly - yON C Cl/4  (5-25)
C C L2(Q)

Proof:

Subtract (5-22) from (5-21) and (5-24) from (5-23) to get:

2) ay

Q at2  AX0 dQO  -- f -X dR (5-26)

f  YO ) dQl C f (Y YO) -- dR . (5-27)

YCI;C at2  I£A - R CO 0 aVAI
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Now consider the following equations

2X

-4-+ A -y 0 on Q
3t2  O CO CO 0 0

O0onEXe0 0

0 on R (5-28)
3vA0

X O(X,T) = 0 on 0

axe0O
- (x,T) - 0 on
at 0

32Xc

-+ c = -y 0  on Q
at2  I¢I c l el 1

X Cl 0 lninOonZ

x 0 on R (5-29)

xCl(x,T) -0 on nl

- (xT) - 0 on Q

atI
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It can be shown (41 that

xc e* ' = 0,1

Consequently

x O L2(0,T; HI1/ 2 (S))

ax C L2(0,T;H-1 /2(S))

aVAl iR

From (5-13), one concludes that

f u (C (5-30)
-I 0R IL2(0 ,T; HI/ 2 (S)) r 1

,/" ' ai l 1- i C . (5-31)
3V& I R L2 (0,T; H-1/ 2 (S)) 2

Let X0 U x 0 in (5-26) and X, x El in (5-27) and use (5-28)-(5-29), (5-30)-

(5-31), to get

ly yOI C CI
cO 0 L2(Q) 3

ly -O I (C I/4
el ci L2(Q1 ) 4

from which one obtains (5-25).

Now the weak limits of the eigenvectors of A , i.e., (4-25)-(4-26) are.£
employed to solve (5-13)-(5-20). First, renormalize (*k) k . Then, the

solution of (5-19)-(5-20) may be represented by:
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0 k-I 0

T
£k L2(0,T), E= f ck(t)12 dt <

k=1

yO =Zdk *k
el kul I

00 T
dk £ L2(O,T), Z f Idk(t)12 dt < .

c k=1 0 eI

in order to obtain ck(t), dk(t), let
c

x I(x~t) - elt)fk(x), 6 c C2([0,TJ), O(T) = - (T) U

0 0 dt

dv

x (x,t) - vjt)*k(x), v c C2U0O,TI), v(T) - - (T) - 0

in (5-23)-(5-29) to get

fTck -+ li dt - f (f *k)Bdt - (hk - (0) + (g 0i,)B0

0 (d2 00 '00 00 dt 0 0

T d2v T dv
f dk - +Xk c dt- f(f +,k)Odjt - (h fk) - (0)

0f d(t+ kv2t 1 0 1 1 I dt

+ (g fk'9v(0) - c fT(7 cz f *X !- d) vdt
1 1 0 '=I s0 3A
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which'are equivalent to

d2 ck
-k + Pk ck . (f ,,k)

dt 2  0 0 0

ck(O) = (ho *k)
0 0

dck

dt 0 0

2dk k
S2dk @01

-+ Xk c.dk - (f ,fk) - E E cl f -Z dS
dt2  I C 1 1 Z=i S 0 3VAI

dk(0) - (h ,fk)
C 1 1

d dk

- (0) -(9 *.k)
dt 1

Remark 5.1:

It should be stressed once more that the concepts used in approximating

(5-5)-(5-11) can be employed to approximate any boundary value problem that

fits into (5-1)-(5-5).
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SECTION 6

CONCLUSIONS

In this paper, three stiff classical boundary value problems (namely

elliptic, parabolic and hyperbolic) have been analyzed, using the spectral

analysis of stiff operators [5].

For elliptic problems, it has been shown, that by appropriately modifying

the weak limits of the eigenvectors of Ac, a Laurent series expansion of any

order can be derived. For evolution problems, zeroth order approximations

in L2(0,T; L2 (fl)) were easily constructed, using only the weak limits of the

eigenvectors of Ac.

Many other similar problems (including control problems) can be analyzed

using the concepts used in the present paper.

Nice physical interpretations can be associated with the behavior of the

solutions of (1-1)-(1-3) as e + 0 in the fields of heat transfer and electro-

magnetic wave propagation. In a future publication [6], these interpretations

are discussed using several examples of stiff boundary value problems.

II The approximations obtained in this paper are also compared with finite

dimensional approximations.

B-41



REFERENCES

1. Aubin, J.P., Applied Functional Analysis, John Wiley and Sons, New York,
1979.

2. Lions, J.L., Optimal Control of Systems Governed by Partial Differential
Equations, Springer-Verlag, New York, 1971.

3. Lions, J.L., Perturbations Singulieres dans les Problems aux Limites
et en Controle Optimal, Springer-Verlag, New York, 1973.

4. Lions, J.L. and E. Kagenes, Nonhomogeneous Boundary Value Problems and
Their Applictions, Volumes I and II, Springer-Verlag, New York, 1972.

5. Salhi, H. and D.P. Looze, "Spectral Analysis of Stiff Operators,"
Technical Paper, TP-220, ALPHATECH, Inc., Burlington, MA, 1985.

6. Salhi, H. and D.P. Looze, "Analysis and Approximation of a Class of
Stiff Boundary Value Problems with Applications to Heat Transfer and
Electromagnetics," in preparation.

B-42



APPENDIX C

C.1 INTRODUCTION

four different models have been used during the design and analysis of

the report. The models are the subsystem design model, the subsystem truth

model, the coupled system analysis model, and the coupled system truth model.

Each model is a low-order finite element approximation of a set of masses

corrected by flexible beams. The models take the form:

Mp + Dp + Kp = Bf (C-1)

y = Cp (C-2)

where N - number of elements

m - number of forces

p - N vector of positions of the elements

f - N vector of forces or the elements

y - r vector of measurements

M - NxN mass matrix

K - NxN spring constant matrix

K - NxN damping matrix

B - Nxm force coefficient matrix

C - rxN output matrix

The remaining sections present the data for each of the finite element models

that has been used.

C-I
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C.2 SUBSYSTEM DESIGN MODEL

Number of masses - 3

N- 5

H = 5.5000 0.3536 0.0000
0.3536 5.5000 0.3536
0.0000 0.3536 5.5000

K f 5.3924 -3.8130 0.0000
-3.8130 5.3924 -3.8130
0.0000 -3.8130 5.3924

D f 0.3300 0.0212 0.0000
0.0212 0.3300 0.0212
0.0000 0.0212 0.3300

B - 2.1213 0.0000 0.0000
0.0000 2.1213 0.0000
0.0000 0.0000 2.1213

C - 1.0000 -0.7071 0.0000
0.0000 0.7071 -1.0000

Note: The inputs for subsystems 1 and 2 are defined in Fig. 2-1.

C.3 SUBSYSTEM TRUTH MODEL

Number of massess - 3

N 5

M = B.5000 0.3536 0.0000 0.0000 0.0000
0.3536 1.0000 0.2500 0.0000 0.0000
0.0000 0.2500 B.5000 0.2500 0.0000
0.0000 0.0000 0.2500 1.0000 0.3536
0.0000 0.0000 0.0000 0.3536 B.5000

K = 18.7500 -13.2583 0.0000 0.0000 0.0000
-13.2583 18.7500 -9.3750 0.0000 0.0000
0.0000 -9.3750 18.7500 -9.3750 0.0000
0.0000 0.0000 -9.3750 18.7500 -13.2583

0.0000 0.0000 0.0000 -13.2583 18.7500

D - 0.5100 0.0212 0.0000 0.0000 0.0000
0.0212 0.0600 0.0150 0.0000 0.0000
0.0000 0.0150 0.5100 0.o15o 0.0000
0.0000 0.0000 0.0150 0.0600 0.0212
0.0000 0.0000 0.0000 0.0212 0.5100

C-2
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B = 2.7386 0.0000 0.0000
0,0000 0.0000 0.0000
0.0000 2.7386 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 2.7386

C = 1.0000 0.0000 -0.7071 0.0000 0.0000
0.0000 0.0000 0.7071 0.0000 -1.0000

C.4 COUPLED ANALYSIS MODEL

Number of masses = 6

N= 6

M = 5.5000 0.3536 0.0000 0.0000 0.0000 0.0000

0.3536 5.5000 0.3518 0.0000 0.0000 0.0000

0.0000 0.3518 5.5000 0.0025 0.0000 0.0000

0.0000 0.0000 0.0025 5.5000 0.3518 0.0000

0.0000 0.0000 0.0000 0.3518 5.5000 0.3536

0.0000 0.0000 0.0000 0.0000 0.3536 5.5000

K - 5.3924 -3.8130 0.0000 0.0000 0.0000 0.0000
-3.8130 5.3924 -3.7941 0.0000 0.0000 0.0000

0.0000 -3.7941 5.3924 -0.0270 0.0000 0.0000

0.0000 0.0000 -0.0270 5.3924 -3.7941 0.0000

0.0000 0.0000 0.0000 -3.7941 5.3924 -3.8130

0.0000 0.0000 0.0000 0.0000 -3.8130 5.3924

D - 0.3300 0.0212 0.0000 0.0000 0.0000 0.0000

0.0212 0.3300 0.0211 0.0000 0.0000 0.0000

0.0000 0.0211 0.3300 0.0002 0.0000 0.0000

0.0000 0.0000 0.0002 0.3300 0.0211 0.0000

0.0000 0.0000 0.0000 0.0211 0.3300 0.0212

0.0000 0.0000 0.0000 0.0000 0.0212 0.3300

B - 2.1213 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 2.1213 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 241213 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 2.1213 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 2.1213 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 2.1213

C - 1.0000 -0.7071 0.0000 0.0000 0.0000 0.0000

0.0000 0.7071 -0.9950 0.0000 0.0000 0.0000

0.0000 0.0000 0.9950 -0.7071 0.0000 0.0000

0.0000 0.0000 0.0000 -0.9950 -0.7071 0.0000

0.0000 0.0000 0.0000 0.9950 0.7071 -1.0000

C-3



C.5 COUPLED TRUTH MODEL

Number of masses = 6

N = 11

M = 9.2500 0.3536 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.3536 1.0000 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.2500 9.2500 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.2500 1.0000 0.3518 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.3518 9.2500 0.0025 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0025 1.0000 0.0025 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0025 9.2500 0.3518 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3518 1.0000 0.2500 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2500 9.2500 0.2500 0.000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2500 1.0000 0.3536
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3536 9.2500

K 18.1244 -12.8159 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
-12.8159 18.1244 -9.0622 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 -9.0622 18.1244 -9.0622 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000!
0.0000 0.0000 -9.0622 18.1244 -12.7523 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 -12.7523 18.1244 -0.0906 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 -9.0906 18.1244 -0.0906 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 -12.7523 18.1244 -12.7523 0.0000 0.0000 0.0000
0.0000 0.0000 1 0.0000 0.0000 0.0000 0.0000 -12.7523 18.1244 -9.0622 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -9.0622 18.1244 -9.0622 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -9.0622 18.1244 -12.8159
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -12.8159 18.1244

D = 0.5550' 0.0212 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0212 0.0600 0.0150 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0150 0.5550 0.0150 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0150 0.0600 0.0211 0.0000 0.0000 0.0000 0.0000 O.OCO0 0.0000
0.0000 0.0000 0.0000 0.0211 0.5550 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0002 0.0600 0.0002 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.5550 0.0211 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0211 0.0600 0.0150 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0150 0.5150 0.0150 0.0000
0.0000 0.00Cq 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0150 0.0600 0.0212
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0212 0.5550

B = 2.8123 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 2.8723 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 2.8723 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 2.8723 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 2.8723 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 2.8723

C 1.0000 0.0000 -0.7071 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.7071 0.0000 -0.9950 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.9950 0.0000 -0.7071 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.9950 0.0000 -0.7071 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9950 0.0000 0.7071 0.0000 -1.0000

C-4

US OOVEWNMENT 'PINTING (OFFICE 646-067/40547


